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Abstract 

 

The accuracy of cost estimates is vital during this era of budget constraints.  A 

key component of this accuracy is regularly updating the cost estimate at completion 

(EAC).  A 2014 study by the Air Force Cost Analysis Agency (AFCAA) improved the 

accuracy of the cost estimate at completion (EAC) for space system contracts.  The study 

found schedule duration to be a cost driver, but assumed the underlying duration estimate 

was accurate.  This research attempts to improve the accuracy of the duration estimate 

from the AFCAA study.  First, the overall accuracy is evaluated with the Mean Absolute 

Percent Error (MAPE).  Then the duration estimates are analyzed for timeliness to 

determine when the methods offer improved accuracy over the status quo.  Finally, the 

methods are evaluated for reliability (accuracy for contracts with Over-Target-Baselines 

(OTBs)).  The methods researched here are more accurate, timely, and reliable than the 

status quo method.  The original objective, to improve the accuracy of the duration 

estimates for the cost estimating model, was achieved.  The accuracy gains ranged from 

2.0% to 13.4% for single contracts, 3.2% to 5.1% for OTB contracts, and 2.9% to 5.2% 

for all contracts combined.  The accuracy improvement is more pronounced from 0% to 

70% completion, with a 4.0% to 7.6% increase in accuracy.  Finally, the overall accuracy 

improvement for the EAC was 6.5% (24.4% vs. 17.9%).  
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Using Earned Value Data to Forecast the Duration of Department of Defense (DoD) 

Space Acquisition Programs 

 

I.  Introduction 

General Issue 

The Department of Defense (DoD) faces a constrained fiscal environment for the 

foreseeable future.  Under these conditions, the DoD has come under increased scrutiny 

from Congress to improve the accuracy of estimating acquisition programs’ cost and 

schedule.  Many prior studies have focused on the overall cost of programs (the cost 

estimate at completion (EAC)) (Smoker, 2011).  However, cost is not the only important 

measure of performance.  Cost, schedule, and technical performance are the three 

primary performance objectives of acquisition program management.  These three 

components are inter-related, therefore when one component is affected, the others are 

affected.  Although cost performance is studied, schedule performance is the primary 

focus of this research with an emphasis on improving the accuracy of schedule estimates.  

The current method for evaluating schedule performance is based on Earned 

Value Management (EVM), an approach created in the 1960s.  EVM has been a useful 

tool for monitoring cost performance, but it has limitations with assessing schedule 

performance (Lipke, 2003).  Specifically the schedule performance index (SPI) indicates 

whether a contract’s schedule performance is favorable (SPI > 1.0) or unfavorable (SPI < 

1.0).  Unfortunately, the SPI converges to 1.0 as the contract nears completion; as the 

contract matures the SPI gradually becomes useless as a schedule performance metric.  

Earned Schedule (ES), a schedule performance metric, was developed to overcome 
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EVM’s shortcomings (Lipke, 2003).  Earned Schedule has demonstrated improved 

schedule performance assessment over SPI (Henderson, 2004; Crumrine, 2013). 

However, Earned Schedule has not been applied exclusively to estimating the duration of 

space system acquisitions.  This research explores and applies five techniques to estimate 

the duration at completion for space programs.  The objective is to enhance cost estimates 

and decision support.  This chapter provides a discussion of how schedules are estimated 

and evaluated with an overview of EVM based methods and the critical path method 

(CPM).  The remainder of the chapter will address the specific research questions to be 

investigated, methodology used, and the limitations of this research. 

Background 

The traditional project control method (EVM) monitors actual performance 

compared to planned, analyzes the variance, and provides a quantitative method to 

forecasts the end result (Abdel Azeem, Hosny, & Ibrahim, 2014).  Research conducted by 

the Air Force Cost Analysis Agency (AFCAA) revealed EVM estimating methods 

improved cost estimates of space systems midway through the acquisition lifecycle 

(Keaton, 2014).  A key component of that study was the use of duration as a cost driver 

(Keaton, 2014).  However, one potentially problematic assumption of that study was the 

assumption of accuracy for the duration estimates.  The duration estimates were based on 

the contractor performance reports (CPR) which are based on the critical path method 

(CPM).  Are the CPR duration estimates accurate for space systems?  The simple answer 

is no.  Schedule growth is rampant in DoD acquisition; satellite programs experience 

above average development cost and schedule growth (GAO, 2014).  Why does schedule 
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growth occur?  According to a recent RAND report, Prolonged Cycle Times and 

Schedule Growth in Defense Acquisitions, the top three cited factors for schedule were: 

• Difficulty in managing technological risk 

• Overoptimistic initial estimates and expectations 

• Lack of funding stability (2014) 

These factors can be grouped into two categories: errors and decisions.  Errors 

include cost estimation, schedule estimation, and technical issues (development or 

implementation) (Bolten, et al., 2008).  Decisions include changes in requirements, 

affordability, quantity, schedule, and funding transfers (within or between a program) 

(Bolten, et al., 2008).  Even perfect estimates cannot account for all of the impacts from 

decisions.  Therefore the CPR estimates may not be accurate at all times.  On the other 

hand, in the absence of decision effects, the CPR estimates may not be accurate due to 

overoptimistic expectations.  Why use the CPR based duration estimates?  One reason is 

a lack of better alternatives.  Given these shortcomings, the opportunity exists to provide 

a more accurate duration estimate. 

Problem Statement 

Cost estimates play a vital role in the budgeting process.  Historically, schedule 

estimates are not given the same level of attention as cost estimates (GAO, 2012).  

However, schedule estimates are also essential to the accuracy of cost estimates and 

overall program performance (GAO, 2012).  The accuracy of a cost estimate is important 

because a lack of accuracy has unfavorable consequences.  Cost estimates that 

underestimate may eventually require funds to be pulled from other programs causing 
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extra work, loss of productivity, and possibly jeopardizing multiple programs (Bolten, et 

al., 2008).  Overestimating may lead to an opportunity cost; resources that could have 

been allocated to systems were not invested.  Ultimately, more accurate cost estimates 

will lead to better resource allocation decisions and inputs into the budget process. 

Since 1993 there have been many studies utilizing earned value data to develop 

cost estimates (Christensen, 1993, 1994, 1999; Unger, 2001; Nystrom, 1995).  These 

studies employed a variety of methods: index-based, linear regression, nonlinear 

regression, and S-curves.  The overwhelming result of these studies is there is not one 

method that works best in all circumstances (Trahan, 2009).  The AFCAA study 

determined Estimates at Completion (EACs) based on the Budgeted Cost of Work 

Performed (BCWP) burn rate improved the accuracy for space systems with 

developmental contracts (Keaton, 2014).  The question remained, are the underlying 

duration estimates accurate?  This research attempts to evaluate the schedule estimating 

method used in the AFCAA study.  Next, additional methods are explored in an effort to 

improve the accuracy. 

In addition to cost estimate problems, the majority of space programs have 

schedule growth (Younossi, et al., 2008).  Therefore, a need exists to accurately predict 

program duration in order to detect schedule issues sooner.  Improved schedule forecasts 

should provide more accurate and timely data to program managers thus enhancing risk 

management and decision making.   

The current methods (CPM and EVM) for estimating program duration are 

adequate, but can be improved.  Many studies explain the strengths and weakness of 

traditional EVM (Lipke, Zwikael, Henderson, & Anbari, 2009) and CPM (Kim, 2007).  
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The primary weaknesses of the CPM are failure to update the estimate with actual data, 

the lack of early detection of schedule problems, and complexity (GAO, 2012).  The 

foundation of the argument against EVM is that it is value based instead of time based 

and deterministic instead of probabilistic (Lipke, 2003; Kim, 2007).  For example, a 

schedule variance (Earned Value - Planned Value) of $3M means we are behind schedule 

$3M instead of three months behind.   

Earned Schedule was developed to overcome the value based weakness of EVM.  

However, both EVM and Earned Schedule forecasts only provide point estimates so they 

do not provide a probability or uncertainty associated with the estimate.  The Kalman 

filter earned value method (KEVM) addresses the inherent weaknesses of CPM, EVM, 

and ES (Kim & Reinschmidt, 2010).  This method is a hybrid of earned schedule (ES) 

and a Kalman filter and has shown improved accuracy over the current methods (CPM, 

EVM, and ES) (Kim & Reinschmidt, 2010).  This research will not attempt to replace 

EVM techniques.  Instead, the research objective is to enhance and expand the toolset for 

estimating program duration. 

Research Objective and Questions 

The overall research objective is to evaluate forecasting methods for space program 

duration based on the following criteria: accuracy, reliability, and timeliness.  In support 

of the overarching research objective, the following questions will be investigated: 

1. What are the appropriate methods to estimate a program’s duration? 

2. How should accuracy be measured and how accurate are the various schedule 

estimating methods (individual contract, overall and by various groupings)? 
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3. At what point in time (if at all) are the new techniques more accurate than the 

status quo? 

4. Are the forecasts accurate for programs with one or more over target baseline 

(OTB)? 

 

The overall goal of this research is to determine the schedule estimating methods that 

can improve the cost estimate and add value to space system program offices (SPOs).  

This value may be in the form of an additional tool for analysts to use when evaluating 

the schedule performance of a program.  The first investigative question addresses what 

forecasting methods are available.  The second investigative question is twofold; first we 

must determine which accuracy measure should be used.  Then we must analyze the 

accuracy of each method by individual contract, overall, and groupings to determine if 

substantial difference exist in the forecasting models.  The third investigative question 

seeks an answer to when, if at all, the forecasting methods become more accurate than the 

status quo.  Generally earlier forecasts are less accurate because more uncertainty exists.  

Additionally, most programs are not stable until later in the program (50% complete or 

later) and developmental programs take longer to stabilize than production programs 

(Petter, 2014).  The fourth question determines whether the forecasts are still useful for 

programs that have OTBs.  Many programs have undergone an OTB.  Programs that 

undergo an OTB may be less stable than non-OTB programs.   
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Methodology 

The Defense Cost and Resource Center (DCARC) is used to obtain the necessary 

EVM data to conduct the analysis of program schedule.  This research will examine 

forecasts based on the critical path method (CPM), earned value and earned schedule 

index based methods, time series, regression (Smoker, 2011), the Kalman Filter 

Forecasting Method (Kim, 2007), and analysis of the Integrated Master Schedule (IMS).  

All of the forecasting methods will use data from the Earned Value Management Central 

Repository (EVM-CR).   

The accuracy of the models will be evaluated by the mean absolute percentage 

error (MAPE).  The goal is to measure the overall accuracy of each model and the 

accuracy at certain percent complete intervals: 0-10%, 11-20%, and so on until 100%.  

The forecasting methods will first be evaluated by individual contract.  Then the contracts 

are aggregated by duration: long, medium, and short duration.  Next the contracts are 

grouped by OTBs (one or more) and non OTB contracts.  Finally, accuracy is evaluated 

across all contracts (all observations). 

Assumptions and Limitations 

The DCARC is a system to collect Major Defense Acquisition Program (MDAP) 

data (DCARC, 2014).  These data consist of Contactor Performance Reports (CPR) and 

other information needed to evaluate program performance.  The primary EVM data of 

interest in this research are: Budgeted Cost of Work Performed (BCWP), Budget at 

Complete (BAC), program start date, and the estimated completion date (ECD) for the 

program.  The government contractors required to provide CPRs must adhere to industry 
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standards for EVM systems and reporting.  The CPR data is reviewed by the program 

management office for its quality and completeness.  Although no data source is without 

error, the DCARC is assumed to be a credible and reliable data source because of the 

industry standard in place and the program office review process (NDIA/PMSC, 2012).  

As an added check, we reviewed the CPR data used in this research for accuracy, 

completeness, and consistency.   

The analysis database is limited to space system programs primarily because the 

characteristics of space systems programs are different than other programs such as 

aircraft.  Typically, space systems are acquired in much lower quantities than other 

programs.  Strictly analyzing space systems should lead to a more accurate approach for 

estimating space systems, but could be less useful for other systems.  The specific type of 

contract selected for this analysis is Research, Development, Test and Evaluation 

(RDT&E).  RDT&E programs are more susceptible to schedule and cost estimating 

errors than production contracts (Bolten, et al., 2008).  This result is logical because 

production contracts are for more mature programs with less uncertainty than 

development contracts (Bolten, et al., 2008; Keaton, 2014).  Therefore in theory, RDT&E 

schedule estimates have more room for improvement. 

Thesis Preview 

A program’s schedule is important because programs completed on time will 

deliver capability sooner.  Additionally, schedule is important because of its relationship 

with cost.  Generally, schedule delays lead to increased program costs because extra 

resources and/or overtime are utilized to reduce the delay (GAO, 2012).  This research 
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does not attempt to study the underlying causes of schedule delays.  Rather, this research 

attempts to forecast the duration of individual contracts based on actual data.   

One critical component of cost analysis is to reduce risk by regularly updating 

cost estimates as programs mature (GAO, 2009; Keaton, 2014).  Keaton’s study 

demonstrated improved accuracy with cost estimates using duration as a parameter in the 

following equation (2014):  

Equation 1:  Estimate at Complete (EACBCWP) 

                                                                      

Where the BCWPBurn Rate is calculated via linear regression with BCWP as the dependent 

variable and time (months) as the independent variable.  The key relationship is the time 

to complete the system and the burn rate.  Therefore, increasing the accuracy of the 

underlying duration estimate should further improve the accuracy of the BCWP based 

cost estimate (Equation 1).   

Chapter 2 examines the relevant literature for program management, EVM, 

Earned Schedule (ES), and the Critical Path Method (CPM).  Additionally, two 

established forecasting techniques are described: time series analysis and the Kalman 

filter method.  Finally, we examine a new technique to forecast a contract’s schedule 

based on the Integrated Master Schedule (IMS).  Chapter 3 discusses the specific 

methodology used in this research.  Chapter 4 presents the results of the research and a 

detailed discussion.  Chapter 5 summarizes the research, discusses the recommendations, 

and explores areas for future research. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to research program management, EVM, and 

forecasting literature in order to develop accurate duration estimates.  The first objective 

is to explain program management and EVM in further detail.  Then schedule forecasting 

techniques are described, which leads into the relevant EVM research and the emergence 

of Earned Schedule.  Next, linear regression, time series analysis, Kalman filter theory, 

and the Kalman filter forecasting method are examined.  Finally, an analysis of the 

Integrated Master Schedule (IMS) is presented. 

Program Management 

Fleming and Koppelman define a project as “a one-time-only endeavor to achieve 

specific objectives with a precise start and completion date and finite resources to 

accomplish the goals.” (2000: 203)  Whereas a program is essentially a portfolio of two 

or more related projects (Peisach & Kroecker, 2008).  The literature often uses project 

and program management interchangeably.  This research will stay consistent with the 

previous definitions.  Individual contracts are considered projects.  Program will be used 

when discussing the overall performance of the portfolio of contracts.   

According to the GAO, “[the] DoD and Congress have taken meaningful steps to 

improve the acquisition of major weapon systems, yet many programs are still falling 

short of cost and schedule estimates” (GAO, 2014: 1).  Program managers are responsible 

for the overall success of the program based on three primary criteria:  cost, schedule, and 

technical performance.  In order to monitor a program’s performance, the Defense 
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Acquisition Guidebook states, “the program manager should obtain integrated cost and 

schedule performance data at an appropriate level of summarization to monitor program 

execution” (2014).  Earned Value Management is the DoD’s primary method for 

project/program execution and control.  The EVM approach can be used to monitor and 

evaluate cost and schedule performance while attempting to meet technical objectives.   

Earned Value Management Background 

Earned Value Management (EVM) is an industry best practice for program 

management and is mandatory for large DoD acquisition programs (GAO, 2009).  EVM 

goes further than a simple comparison of budgeted costs to actual costs.  The budgeted 

cost of work scheduled (planned value), the budgeted cost of work performed (earned 

value), and the actual cost of work performed (actual value) are used to develop 

performance metrics.  These metrics can then be used to assess the program’s cost and 

schedule performance and to estimate cost and time to complete (GAO, 2009).  The 

Defense Acquisition Guidebook defines EVM as: 

A key integrating process in the management and oversight of acquisition 

programs, to include information technology projects… [and is an] approach that 

has evolved from combining both government management requirements and 

industry best practices to ensure the total integration of cost, schedule, and work 

scope aspects of the program. (Defense Acquisition University, 2014: 11.3.1) 

Government acquisition programs exceeding a $20M budget must adhere to EVM 

standards (Defense Acquisition University (DAU), 2014).  Programs over $50M must 

adhere to EVM standards and have a Defense Contract Management Agency (DCMA) 
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validated EVM system (Defense Acquisition University (DAU), 2014).  Figure 1 depicts 

the integration of program management, EVM, cost analysis, and systems engineering 

(GAO, 2009).  Of specific importance is how cost analysis and cost estimates support the 

EVM process while program management monitors the entire process. 

 
Figure 1:  Cost Estimation, Systems Development, and Risk Management 

 

Earned Value Management Data 

The three fundamental EV data for assessing program performance are the 

Budgeted Cost of Work Scheduled (BCWS), the Budgeted Cost of Work Performed 

(BCWP), and the Actual Cost of Work Performed (ACWP).  The contractor must report 

the data on a regular basis, usually monthly.  The data are reviewed by the program 
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management office before being entered into the Defense Cost and Resource Center 

(DCARC) database and the EVM-Central Repository.  Table 1 summarizes and describes 

the relevant data available in the EVM Central Repository (EVM-CR) while Table 2 lists 

common metrics and formulas (DAU Gold Card, 2014).  The primary EVM data of 

interest for schedule assessment are: the BCWP, BCWS, Budget at Completion (BAC), 

Start Date, and the Estimated Completion Date (ECD).  These data are used to calculate 

many of the metrics in Table 2 and are the foundation for the duration forecasts.  The 

duration forecast approach used in the AFCAA study is discussed in the next section 

(Keaton, 2014). 

Table 1:  Summary of EVM Measurements 

EVM measurement Description 

Budgeted Cost of Work Scheduled 

(BCWS), also called Planned 

Value (PV) 

Time-phased Budget Plan for work currently scheduled 

Budgeted Cost of Work Performed 

(BCWP), also called Earned Value 

(EV) 

Value of completed work in terms of the work’s assigned budget 

Actual Cost of Work Performed 

(ACWP), also called Actual Cost 

(AC) 

Cost actually incurred in accomplishing work performed  

Budget at Completion (BAC) The planned total cost of the contract 

Report From The first day of the current reporting period for the contractor 

performance report (CPR) 

Start Date The date the contractor was authorized to start work on the contract, 

regardless of the date of contract definitization. 

Completion Date The completion date to which the budgets allocated in the PMB have 

been planned. This date represents the planned completion of all 

significant effort on the contract. The cost associated with the 

schedule from which this date is taken is the Total Allocated Budget. 

Estimated Completion Date (ECD) The contractor's latest revised estimated completion date. This date 

represents the estimated completion of all significant effort on the 

contract. The cost associated with the schedule from which this date 

is taken is the “most likely” management EAC. 

Budget Completion Date The contract scheduled completion date in accordance with the latest 

contract modification. The cost associated with the schedule from 

which this date is taken is the Contract Budget Base. 
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Table 2:  EVM Metrics and Formulas 

EVM measurement Description Formula 

Cost Variance (CV) Difference between planned and actual 

cost accomplishment 

BCWP - ACWP 

Schedule Variance (SV) Difference between planned and actual 

schedule accomplishment, in dollar 

amount 

BCWP - BCWS 

Cost Performance Index (CPI) Cost efficiency of a program BCWP / ACWP 

Schedule Performance Index 

(SPI) 

Schedule efficiency of a program BCWP / BCWS 

Budgeted Cost for Work 

Remaining (BCWR) 

The budgeted cost of uncompleted 

work packages to reach program’s 

completion 

BAC - BCWP 

Estimate at Completion 

(EAC) 

Forecasted total cost of program [(BAC - BCWP) / PF] 

PF = CPI or SPI*CPI 

Percent Complete (PC) Percentage of the entire program that 

is complete 

BCWP / BAC 

To Complete Performance 

Index (TCPI)  

Projects what the CPI will be for the 

remainder of the project to meet the 

BAC  

[(BAC-BCWP) / (Target-

ACWP)] 

Target = BAC, LRE, or EAC 

Baseline Execution Index 

(BEI)   

How well the project is following the 

baseline plan and completing baseline 

tasks as they are scheduled to be 

completed 

[Total Baseline Tasks 

Completed / Total Tasks with 

Baseline Finish On or Prior to 

Current Report Period] 

 

Schedule Forecasting:  Critical Path Method 

The GAO Schedule Assessment Guide defines the critical path as “the path of 

longest duration through the sequence of activities” (GAO, 2012: 4).  Any delayed 

activities on the critical path will delay the entire project and therefore increase the 

project’s duration (Fleming & Koppelman, 2000).  The current DoD best practice for 

estimating program duration is the critical path method (CPM) in conjunction with the 

integrated master schedule (IMS).  In addition to identifying important activities, the 

CPM is used to estimate the duration of the program (the reported ECD).    
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The GAO Schedule Assessment Guide considers updating the IMS with actual 

progress as a best practice for the CPM (2012).  Unfortunately, that same report lists 

multiple occasions where programs failed to update the IMS (GAO, 2012).  Given this 

shortcoming, the IMS alone may not be a sufficient schedule forecasting tool.  For an 

MDAP, thousands of tasks are entered into the baseline schedule; additional tasks are 

added as the program matures further adding to the schedule’s complexity.  Because of 

this phenomenon, Lipke et al. argue that an “in depth schedule analysis is burdensome 

and may have a disruptive effect on the project team.” (2009: 407).  A less arduous 

method than an in depth schedule analysis is needed.  However, this alternate approach 

must be at least as accurate as the CPM.  Previous project schedule research has 

attempted to improve schedule forecasting using EVM data.  This research will attempt to 

improve schedule forecasting over the CPM while remaining accessible (not overly 

complex or burdensome).   

Schedule Forecasting:  Earned Value Based Methods 

The cancellation of the Navy’s A-12 Avenger program in 1991 ignited a renewed 

interest in EVM research.  These studies were focused on independent cost estimates at 

complete (IEAC) and they established EVM as an effective tool for estimating a 

program’s cost performance (Christensen, 1993, 1994, & 1999).  However, EVM’s 

ability to forecast schedule has not been as successful.  Henderson studied EVM based 

schedule forecasting with the three following formulas (2004): 

Equation 2:  Independent Estimate at Complete (IEAC) 

IEAC(t) = PD / SPI 
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Equation 3:  Independent Estimate at Complete (IEAC) 

IEAC(t) = PD / SPI(t) 

Equation 4:  Independent Estimate at Complete (IEAC) 

IEAC(t) = PD / CPI*SPI(t) 

Where PD is the planned duration and SPI(t) is the earned schedule application to the SPI 

developed by Lipke.  Equation 3 was the only accurate forecasting method out of the 

three in Henderson’s study (2004).  A potential weakness of this study is its application to 

only two projects:  Commercial IT Infrastructure Expansion Project (Phase 1 and 

combined Phases 2 and 3) with durations of 34 and 22 weeks.  The durations of these 

projects are short when compared to the duration of the space systems researched in this 

thesis (from 25 to 242 months).  On the other hand, Henderson’s method should be robust 

because it incorporates the CPM derived Planned Duration (PD) and EVM based 

Performance Factors (PF).  Because of its robustness and simplicity, Henderson’s basic 

formula [IEAC(t) = PD/ Performance Factor (PF)] is used as one of the primary 

forecasting methods in this research.   

EVM research by Kim used the following formula to calculate an IEAC(t) he 

called the Estimated Duration at Completion (EDAC) (2007): 

Equation 5:  Estimated Duration at Completion (EDAC): 

                   
        

   
 

Kim provided an example of a 120 month project to illustrate the schedule forecasting 

weakness of SPI (2007).   Figure 2 shows the planned value (BCWP), the actual costs 

(ACWP), and the earned value (BCWS) over time intervals for this project (Kim, 2007).  
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The project has a 20% overrun in cost and schedule.  Figure 3 shows the stable cost 

estimate at complete (EAC) and the erratic behavior of the Estimated Duration at 

Completion (EDAC) (Kim, 2007).  The EDAC is overestimated by as much as 58% 

during the first half of the project.  Furthermore, the EDAC is underestimated by 20% 

late in the project (95 months).  This erratic behavior by the SPI based schedule forecast 

is also demonstrated in Henderson’s research.  However, the project examined in Kim’s 

study is not described and the proposed equation does not match other schedule 

estimating formulas in the literature (2007).  Therefore the results may not be 

generalizable. 

 

 

Figure 2:  EVM Measurements over Time 

 

To overcome the SPI schedule forecasting weakness, Lipke introduced the 

concept of Earned Schedule (2003).  Earned Schedule is calculated as the number of time 

periods (N) earned value (BCWP) exceeds planned value (BCWS) plus a fraction of the 
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earned value into the next period.  Essentially, Earned Schedule is a linear interpolation 

of the Program Management Baseline (PMB) which is illustrated in Figure 4 as the 

Planned Value line (Lipke, 2012).   

 

 
Figure 3:  EAC and EDAC over Time 

Lipke’s Earned Schedule is calculated with the following equation (2012): 

Equation 6:  Earned Schedule 

                   
                                              

                                               
 

The Schedule Performance Index (SPI(t)) calculation is shown in Equation 7 (Lipke, 

2012).   

Equation 7:  SPI(t) 
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Figure 4:  Earned Schedule Concept 

Earned Schedule was originally developed to provide more sensible information 

to program managers (units of time instead of dollars).  However, Henderson’s study 

established SPI(t) as a useful forecasting method.  Lipke et al. (2009) enhanced the SPI(t) 

forecasts by adding confidence intervals.  That study applied a statistical approach to 

twelve projects and demonstrated accurate results for the three completion points (10%, 

30%, and 60%).  However, the projects used in the analysis were small (less than $6 

million budget) and the specific projects types were not discussed. 

Cost estimating methods were more numerous in the literature.  Table 3 displays 

methods to forecast the cost estimate at completion where the base equation (EAC = time 

now + [(BAC - EV) / PF]) is similar to Henderson’s Equation 5 (Anbari, 2003; 

Christensen, 1993; Lipke, 2003).  This research will use some of the performance factors 
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(PF) from Table 3 to develop time estimates at completion (TEAC).  The performance 

factors will be used with the planned duration (TEAC = PD/PF).   

Table 3:  Formulas for the Estimate at Completion (EAC)  

Type Performance Factor Description 

Standard PF = SPI Standard SPI 

Earned Schedule PF = SPI(t) Earned Schedule based SPI 

Schedule Cost Index  PF = CPI*SPI The product of CPI and SPI is 

called the critical ratio (Anbari, 

2003) or the Schedule Cost Index 

(Christensen, 1993).  

Moving Average PF = CPI(m) Moving average of incremental CPI 

over latest month (m) intervals.  For 

example: CPI(3m), CPI(6m), and 

CPI(12m). 

% Complete PF = (PC)*CPI+(1-PC)*SPI A weighted method using percent 

complete (PC), CPI, and SPI 

 

Vandevoorde and Vanhoucke (2006) examined three schedule forecasting model 

summarized in Table 4.  That study used data from three projects at Fabricom Airport 

Systems in Brussels; the authors found earned schedule method as the only method with 

reliable results during the entire project (Vandevoorde & Vanhoucke, 2006: 298).   

Table 4:  Three Schedule Forecasting Methods 

Type EDAC Description 

Planned Value Method EDAC = PD/PF 

[PF = SPI or SCI] 

PD = planned duration 

Earned Duration 

Method 

EDAC = t + PD-ED/PF  

[PF = SPI or SCI] 

ED = earned duration,  

[ED = actual duration*SPI] 

Earned Schedule 

Method 

EDAC = t + PD-ES/PF  

[PF = SPI(t)] 

SPI(t) = ES/actual time 

 

In 2011, Earned Schedule was studied by an AFIT student, Captain Kevin 

Crumrine.  This study established the Earned Schedule based SPI(t) as a better indicator 

than SPI for assessing a program’s schedule performance.  Crumrine’s study was focused 
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on predicting schedule overruns of aircraft and missile systems rather than forecasting 

duration.  However, it may provide insight into which Performance Factor (PF) leads to a 

better forecast.  Because the SPI converges to 1.0 at approximately the 66 percent 

completion point of the program it may lose forecast accuracy as the program matures 

(Crumrine, 2011).   

Earned Schedule appears to be the best EV based schedule forecasting method 

based on studies conducted by Henderson (2003), Lipke (2003), Lipke et al (2009), 

Vanhoucke & Vandevoorde (2006), and Crumrine (2011).  With the exception of 

Crumrine, those studies focused on small acquisition programs and construction projects.  

A study forecasting the duration of space programs with EV data has not been conducted.  

This research attempts to fill that void in the literature. 

Schedule Forecasting:  Linear Regression 

Linear regression has also been used to forecast a program’s duration.  A study by 

Smoker demonstrated this technique by first regressing the BCWP against months and 

the same approach for BAC (2011).  In that study, Smoker set the BCWP intercept to 

zero because at the start of the project (time zero) the BCWP is zero.  With the regression 

equations for BCWP and BAC, the next step is setting BCWP equal to BAC to solve for 

the unknown month as displayed in Equation 8.  An assumption of this technique is the 

program is 100% complete when BCWP/BAC = 1.0 (Smoker, 2011).  After the 

intermediate calculation, the duration formula is simplified to Equation 9. 

Equation 8:  Intermediate Calculation 
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Equation 9:  Duration Forecast (Regression Based) 

        
             

                                  
 

The primary strength of this method is it takes BAC growth into account; this may 

lead to better forecasts because it is attempting to predict the completion date based on 

trends instead of relying on the static reported completion date.  Even in stable programs 

the BAC tends to gradually increase until the program nears completion.  However, in 

unstable programs not only does the BAC gradually increase, the BAC also jumps from 

one reporting period to the next and exhibits a stepped relationship instead of a straight 

line.  Because of this phenomenon, this regression based method may not be a useful 

forecasting approach for unstable programs.  Another concern with this study is the lack 

of transparency in the program analyzed.  This analysis was conducted on one program 

which was not described by name, commodity, or contract type.  Furthermore, the early 

and late forecasts may not be accurate because the assumption of linearity occurs from 

approximately the 25% to 80% complete points.  Finally, this method requires a basic 

understanding of linear regression and/or the software to conduct the regression. 

Schedule Forecasting:  Time Series Analysis 

According to Box, Jenkins, and Reinsel, “a time series is a sequence of 

observations taken sequentially in time” (2008: 1).  EVM data are reported on a monthly 

basis therefore they can be categorized as time series data.  A key feature of a time series 

is that future observations are dependent on previous observations (Box, Jenkins, & 

Reinsel, 2008).  Time series analysis is concerned with measuring dependence, building 

statistical models, and applying the models to important areas (Box, Jenkins, & Reinsel, 
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2008).  These areas include: meteorology, economics, marketing, production, logistics, 

and financial markets (Makridakis, Wheelwright, & Hyndman, 1998).  This research uses 

time series analysis to forecast future EV indices (CPI, SPI, SPI(t), and BEI) with past 

observations. 

Forecasting with Time Series 

Makridakis, Wheelwright, and Hyndman define forecasting as “the prediction of 

values of a variable based on known or past values of that variable or other related 

variables” (1998: 599).  The basic forecasting process is an analysis of the data series and 

selection of the model that best fits the data series (Makridakis, Wheelwright, & 

Hyndman, 1998).  There are many forecasting methods ranging from simple to complex; 

these methods include simple moving averages,  exponetial smoothing, linear regression, 

general ARIMA, and seasonal ARIMA models.  This research focuses on the Box-

Jenkins method to building forecasting models. 

Box Jenkins 

Autoregressive (AR) / Integrated (I) / Moving Average (MA) (ARIMA) models 

were popularized by George Box and Gwilym Jenkins in the 1970s (Makridakis, 

Wheelwright, & Hyndman, 1998).  The overall approach to building ARIMA models is 

called the Box-Jenkins methodology.  The methodology contains three phases: 

identification, estimation and testing, and application (Makridakis, Wheelwright, & 

Hyndman, 1998).  The major advantage to the Box-Jenkins approach is the robust 

evaluation of the underlying pattern of the time series baseline.  The type of pattern that 

exists helps the practitioner decide which techniques to implement.  Certain patterns 
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suggest the data are suitable for AR, MA, I, or a combination of the parameters.  The 

underlying statistical concepts are discussed in the subsequent sections followed by a 

discussion of the ARIMA model building process.  

Autocorrelation  

A key concept of ARIMA modeling is autocorrelation.  The book Forecasting 

Methods and Applications defines autocorrelation as:  

The correlation between values of the same time series at different time periods. It 

is similar to correlation, but relates the series for different time lags. Thus there 

may be an autocorrelation for a time lag of 1, another for a time lag of 2, and so 

on (Makridakis, Wheelwright, & Hyndman, 1998: 590).   

Lag is the separation in time between an observation and a previous observation 

(Makridakis, Wheelwright, & Hyndman, 1998).  Autocorrelation is similar to 

autoregression, but key differences exist.  Autocorrelation is used to assess the 

relationship of time series data.  Whereas autoregression is used to forecast with time 

series data based on the mathematical relationship autocorrelation describes (Carlberg, 

2013).  Autoregression is discussed further in the General Non-Seasonal ARIMA Model 

section. 

The key autocorrelation statistic is the autocorrelation coefficient for the kth lag 

(k= the lag number) (Makridakis, Wheelwright, & Hyndman, 1998).  The formula is 

shown in Equation 10; where    is the mean of the number (n) of non-missing points, Yt is 

the observation in time (current) while Yt-k, observation at a previous time (lagged by k 

periods) (Makridakis, Wheelwright, & Hyndman, 1998). 
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Equation 10:  Autocorrelation Coefficient 

   
 

 
                 

n

t k 1

 

The autocorrelation function (ACF) contains the autocorrelation coefficients and 

depicts the pattern of autocorrelation (Carlberg, 2013).  The ACF plotted against the lag 

is called a correlogram and is depicted in Figure 5.  In Figure 5, the AutoCorr parameter 

is the autocorrelation coefficient while the bars graphically depict the autocorrelations. 

 
Figure 5:  ACF and PACF Plot 

According to the JMP® 11 Specialized Models guidebook “the [solid blue] curves 

show twice the large-lag standard error (+/-) 2 standard errors” for 95% confidence limits 

(JMP, 2014: 158).  A large autocorrelation from a previous lag (k-1) may inflate 

subsequent lags before dampening (dying out) (Box, Jenkins, & Reinsel, 2008).  Because 

of this phenomenon, an adjustment is made to determine the significant autocorrelation 

from the inflated value; the large-lag is the adjustment for this interdependence (Box, 

Jenkins, & Reinsel, 2008).  The autocorrelation coefficient standard error (SEk) is 
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computed with Equation 11, while the large lag standard is the square root of SEk (Box, 

Jenkins, & Reinsel, 2008). 

Equation 11:  Autocorrelation Standard Error 

     

 

 
       

 

   

   

  

Partial Autocorrelation 

The book Forecasting Methods and Applications states, “partial autocorrelations 

are used to measure the degree of association between observations Yt and Yt-k, when the 

effects of other time lags (1, 2, 3, …, k-1) are removed” (Makridakis, Wheelwright, & 

Hyndman, 1998: 320).  Makridakis, Wheelwright, and Hyndman further explain, “the 

partial autocorrelation coefficient of order k is denoted by αk and can be calculated by 

regressing Yt against Yt-1, …, Yt-k” (1998: 321).  The partial autocorrelation coefficient 

formula is shown in Equation 12 where the αk is represented by the coefficient βk. 

Equation 12:  Partial Autocorrelation Coefficient 

                            

The solid blue lines represent 2 standard errors for 95% confidence limits in the 

PACF plot (see right side of Figure 5 for an example) (JMP, 2013).  The partial 

autocorrelation coefficient standard error is computed as follows (Makridakis, 

Wheelwright, & Hyndman, 1998): 

Equation 13:   Partial Autocorrelation Standard Error 
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White Noise Model 

An assumption of ARIMA models is the forecast residuals follow a white noise 

model (Box, Jenkins, & Reinsel, 2008).  According to the book Forecasting Methods and 

Applications, a white noise model “is a simple random model where observation Yt is 

made up of two parts, an overall level, c, and a random error term, et which is 

uncorrelated from period to period“ (Makridakis, Wheelwright, & Hyndman, 1998: 317).  

Equation 14 shows the white noise model: 

Equation 14:  White Noise Model 

         

The white noise model is a critical aspect of time series analysis.  In theory, all 

autocorrelation coefficients of white noise data have a sampling distribution 

approximately normal with a mean of zero and standard error of 1/√n, where n is the 

number of observations (Makridakis, Wheelwright, & Hyndman, 1998).  Each lag’s mean 

can be compared to zero with a t-test.  Once again, the solid blue lines on the ACF side in 

Figure 5 represent two standard errors (JMP®, 2013).  Values within the blue lines are 

not statistically different than zero (JMP®, 2013).  Values outside the blue lines are 

statistically different than zero thus we can infer those observations are not random 

(white noise), they represent a pattern (Box, Jenkins, & Reinsel, 2008).  In addition to the 

white noise model, the sampling distribution is another foundational concept in time 

series analysis (Makridakis, Wheelwright, & Hyndman, 1998).  The distribution and 

standard error provide insight into what is random (white noise) and what is a true pattern 

or significant relationship (Makridakis, Wheelwright, & Hyndman, 1998). 
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Portmanteau Tests 

Portmanteau tests allow multiple autocorrelation coefficients to be tested at once 

(Makridakis, Wheelwright, & Hyndman, 1998).  The most common portmanteau tests are 

the Box-Pierce and Ljung–Box test (Makridakis, Wheelwright, & Hyndman, 1998).  Both 

methods use the following hypothesis test: 

 H0: The data are independently distributed.  The correlations in the population 

from which the sample is taken are zero, so that any observed correlations in the 

data result from randomness of the sampling process. 

 Ha: The data are not independently distributed, the correlations are significantly 

different than zero (Box, Jenkins, & Reinsel, 2008). 

The test statistic for Box-Pierce is displayed in Equation 15 (Box, Jenkins, & Reinsel, 

2008). 

Equation 15:  Box-Pierce Test Statistic 

      
 

 

   

 

Where n is the number of observations and h is the maximum lag considered 

(Makridakis, Wheelwright, & Hyndman, 1998).  Equation 16 displays the formula for the 

Ljung-Box test statistic (Q
*
) which is similar, but slightly different than the Box-Pierce 

test (Box, Jenkins, & Reinsel, 2008): 

Equation 16:  Ljung-Box Test Statistic 

                   
 

 

   

 



29 

The rk variable is the autocorrelation value for observation k (Box, Jenkins, & Reinsel, 

2008).  Both portmanteau tests compare the test statistic (Q and Q*) to the chi-square 

distribution ( 2
) to determine if the plot of the residuals is statistically different from zero 

(white noise) or “to test that the residuals from a model can be distinguished from white 

noise” (JMP, 2013: 158).  The Ljung-Box Q* and p-values appear for each 

autocorrelation lag as depicted in Figure 5 (JMP®, 2013).  A small p-value means the 

data are significantly different than zero (not random/white noise).  We rely on Ljung-

Box in this research because the software (JMP®11.0) provides the Ljung-Box (Q*) and 

theory indicates it has advantages over the Box-Pierce test (Q) (Bowerman & O'Connell, 

1993: 497). 

Time Series Patterns 

There are four patterns in which time series data are categorized: horizontal 

(stationary), seasonal, cyclical, and trend (Makridakis, Wheelwright, & Hyndman, 1998).  

A stationary pattern occurs when the observations fluctuate around a constant mean; an 

example is a product with sales that do not fluctuate much over time (Makridakis, 

Wheelwright, & Hyndman, 1998).  A seasonal pattern exists when certain factors 

influence the time series; for example, Christmas and other holidays affect the sales of 

many products.  A cyclical pattern exists when the increases and decreases of the data are 

not due to a fixed period; the lack of a fixed period is what differentiates cyclical from 

seasonal; examples include industries correlated with the macro-economy and business 

cycle (steel, automobiles, and major appliances) (Makridakis, Wheelwright, & Hyndman, 

1998).  A trend pattern exists where there is a long term rise or decline in the data; 
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examples included sales from many companies, the gross national product, and energy 

usage (Makridakis, Wheelwright, & Hyndman, 1998).  Many data series are comprised of 

multiple patterns (Makridakis, Wheelwright, & Hyndman, 1998).  Given the nature of 

this research we do not expect to identify any seasonal or cyclical patterns.  Although 

trend patterns may exist we expect to primarily deal with stationary EV indices (CPI, SPI, 

SPI(t), and BEI). 

Examining Stationarity 

In time series analysis, stationary essentially means no growth in the data with a 

constant mean and variance that is independent of time (Makridakis, Wheelwright, & 

Hyndman, 1998).  There are multiple ways to check stationarity.  The most basic check is 

a visual examination of the time series plot.  A stationary plot is free of upward or 

downward trends, with the spikes close to equal distance from the mean so they 

effectively cancel each other out.  Figure 6 graphically depicts a stationary time series. 

 
Figure 6:  CPI Time Series Graph 

Another method to detect stationarity involves examining the ACF plot (Figure 

5).  According to the book Forecasting Methods and Applications, “the autocorrelations 
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of stationary data drop to zero quickly while the non-stationary series will remain 

significantly different than zero for several time lags” (Makridakis, Wheelwright, & 

Hyndman, 1998: 326-327).  When a visual examination of the ACF plot does not provide 

conclusive results, the Augmented Dickey-Fuller test (ADF) can be used (JMP®, 2013).  

The ADF test determines stationarity with a mathematical test statistic and the following 

hypothesis test (JMP®, 2013):   

 H0:  Test Statistic = 0 (not stationary) 

 Ha:  Test Statistic < 0  (the data is stationary) 

A negative value denotes a stationary time series (JMP®, 2013).  The JMP® 11.0 

output produces three ADF tests: zero mean, single mean, and trend (2013).  Because the 

indices in this research should never be zero the means will be single or trend.  Figure 6 

shows negative single and trend ADF test statistics therefore this time series is considered 

stationary. 

Removing Stationarity 

When trends or other non-stationary patterns exist in the times series, the resulting 

positive autocorrelations dominate the ACF plot (Makridakis, Wheelwright, & Hyndman, 

1998).  Therefore it is critical to remove the non-stationarity in order to assess the true 

autocorrelation structure before proceeding with the model building process (Makridakis, 

Wheelwright, & Hyndman, 1998).  One approach is called differencing and is defined by 

the book Forecasting Methods and Applications as “the change between each observation 

in the orignial series.  The differenced series will have only n-1 values since it is not 

possible to calculate a difference (Y’1) for the first observation” (Makridakis, 
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Wheelwright, & Hyndman, 1998: 326)  The differencing calcluation is shown in 

Equation 17 (Makridakis, Wheelwright, & Hyndman, 1998): 

Equation 17:  First Order Differencing 

            

Taking the first difference is a useful method for eliminating stationarity 

(Makridakis, Wheelwright, & Hyndman, 1998).  However, the first difference may not 

remove the stationarity completely.  In this case, the data can be differenced again.  This 

series will have n-2 values and contain two integrated (I) parameters.  The formula is 

shown in Equation 18 (Makridakis, Wheelwright, & Hyndman, 1998): 

Equation 18:  Second-Order Differencing 

                  

General Non-Seasonal ARIMA Model 

According to the book Predictive Analytics, the term ARIMA stands for: 

 AR: Autoregressive.  The model and forecast can be partially or completely based 

on autoregression. 

 I: Integrated. The baseline may need to be differenced and the differenced series 

modeled. In order to forecast, the difference(s) are reversed by a process called 

integrating. This restores the baseline to its original level. 

 MA: Moving Average. Not based on an average of observations, but an average 

of a model’s errors (Carlberg, 2013: 242) 

Regression with time lagged input variables is called autoregression (AR) and is 

based on the general form of Equation 19 (Makridakis, Wheelwright, & Hyndman, 1998). 
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Equation 19:  Autoregression 

                               

Conceptually, AR is similar to regression; the difference is the response variables 

from previous periods are used as explanatory variables to compute the current period’s 

response (Yt) (Makridakis, Wheelwright, & Hyndman, 1998). 

As previously discussed, the residuals (or error terms) can also be used as 

explanatory variables in a regression equation (Makridakis, Wheelwright, & Hyndman, 

1998): 

Equation 20:  Moving Average (Box-Jenkins) 

                               

Here the dependence relationship among successive error terms (et-1, et-2, … et-q ) is called 

a moving average (MA) model (Makridakis, Wheelwright, & Hyndman, 1998).  This is 

obviously different than a simple moving average which is an average of observed 

values.  To avoid confusion, this research only uses the term moving average (MA) when 

referring to ARIMA models.   

Autoregressive (AR) and moving average (MA) parameters can be combined to 

form autoregressive moving average (ARMA) models (Makridakis, Wheelwright, & 

Hyndman, 1998).  ARMA models can only be used with stationary data; if the original 

data is non-stationary, the data must be differenced (Makridakis, Wheelwright, & 

Hyndman, 1998).  At this point, the model is now called an autoregressive integrated 

moving average (ARIMA) model.  There are a large number of possible ARIMA models.  

The general non-seasonal model is known as ARIMA (p, d, q) (Carlberg, 2013): 

 AR:  p = number of the autoregressive parameters in the model 
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 I:  d = the number of times the data has been differenced to achieve stationarity 

 MA:  q= the number of moving average parameters in the model (Carlberg, 2013: 

243) 

A white noise model is classified as ARIMA (0,0,0); while a random walk model 

is classified as ARIMA (0,1,0) or I(1) because it has one degree of differencing and no 

AR or MA parts (Makridakis, Wheelwright, & Hyndman, 1998). 

The simplest AR model is the first order ARIMA (1,0,0) which is also denoted by 

AR(1).  The equation is mathematically defined in Equation 21 where observation Yt 

depends on Yt-1 with the coefficient    restricted to -1 to 1 (Makridakis, Wheelwright, & 

Hyndman, 1998: 337).  The time series is equivalent to a white noise model when    = 0.  

When   = 1, the time series is equivalent to a random walk model (Makridakis, 

Wheelwright, & Hyndman, 1998: 337-338). 

Equation 21:  ARIMA (1,0,0) 

               

The simplest MA model is the first order ARIMA(0,0,1) or MA(1).  The model is 

mathematically defined in Equation 22 where observation Yt depends on the residual (et) 

and also the previous residual (et-1); the coefficient is restricted to lie between -1 and 1 

(Makridakis, Wheelwright, & Hyndman, 1998). 

Equation 22:  ARIMA (0,0,1) 

               

In practice it is rarely necessary to use values other than 0, 1, or 2, because this small 

range of values covers a great range of forecasting situations (Makridakis, Wheelwright, 
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& Hyndman, 1998).  Now that the essential concepts have been discussed we can move 

to the model building process itself. 

Box-Jenkins Approach 

This section will describe the three phases of the Box-Jenkins methodology:  

Identification, Estimation and Testing, and Application.  Figure 7 visually depicts the 

Box-Jenkins methodology (Makridakis, Wheelwright, & Hyndman, 1998). 

 
Figure 7:  Box-Jenkins Methodology Flowchart 

Phase I – Identification 

As the name implies the objective of this phase is to identify models that are 

potentially suitable for the time series data being analyzed.  Data preparation and model 

Phase III 

Application 

Phase II 

Estimation  

and testing 

Phase I 

Identification 

Data Preparation 
  - Transform data 
  - Difference data 

 
Model Selection 
  - Examine data, ACF and PACF to ID potential models 
 
 

Estimation 
  - Estimate parameters in potential models 
  - Select best model using suitable criteria 

Diagnostics 
  - Check ACF/PACF of residuals 
  - Do portmanteau test of residuals 
  - Are the residuals white noise? 

 
Forecasting 
  - Use model to forecast 
 
 

No 

Yes 
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selection takes place in this phase.  Makridakis, Wheelwright, and Hyndman recommend 

the following steps for phase one (1998: 347): 

1. Plot the time series data 

2. Assess the data for stationarity 

3. Use differencing if the series is not stationary 

4. Once stationarity is achieved, examine the ACFs and PACFs to assess patterns 

with three possibilities to consider. 

a. Does seasonality exist 

b. AR or MA model may be determined 

c. If AR or MA is not clearly suggested, an ARIMA may be necessary 

 

The first three steps have been discussed in the previous sections.  Seasonality is 

not a concern (4.a.), but steps 4.b. and 4.c. are crucial in the identification phase.  To 

identify a suitable model we compare the observed patterns with the theoretical 

(expected) ACF and PACF patterns with the approach outlined in Table 5 (Makridakis, 

Wheelwright, & Hyndman, 1998; Montgomery, Johnson, & Gardiner, 1990).  Within 

Table 5 the expression tails off means the function (ACF, PACF) decays in an 

exponential, sinusoidal (sine wave), or geometric fashion with potentially more nonzero 

values than zero (Montgomery, Johnson, & Gardiner, 1990). Whereas cuts off refers to 

the function truncating abruptly to zero with few nonzero values (Montgomery, Johnson, 

& Gardiner, 1990).  In the previous sentences, zero denotes within (+/-) 2 standard errors 

(not statistically different than zero).  A nonzero value is outside the (+/-) 2 standard 

errors (statistically different than zero).  Table 5 highlights the dichotomy between AR 
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and MA models.  In an AR the ACF tails off while the PACF cuts off.  In an MA the 

ACF cuts off while the PACF tails off.  With this in mind the combined ARMA model 

contains a tail off for both ACF and PACF. 

An ARIMA (p,d,q) model is an option if no clear AR, MA, or ARMA model is 

delineated.  The general ARIMA models yields a great variety of patterns in the ACF and 

PACF; given this fact, there are no clear rules for visually identifying ARIMA models 

(Makridakis, Wheelwright, & Hyndman, 1998).  If differencing is required (non-

stationary data) an ARIMA model is a logical choice, otherwise choosing the specific 

model type (p,d,q) is based on judgment, experience, and experimentation (trial and 

error). 

Table 5:  Expected Patterns in the ACF and PACF for AR and MA Models 

Process ACF PACF 

AR (1) Tails off (Exponential decay):  

• positive if φ1 > 0  

• alternating in sign starts (-) if φ1 < 0 

Cut off (spike at lag 1, then cuts to zero) 

• spike is positive if φ1 > 0  

• spike is negative if φ1 < 0 

AR(p) Tails off (Exponential decay or 

damped sinewave) 

Cuts off after lag p 

MA (1) Cuts off (Spike at lag 1, then cuts to 

zero):  

• spike is positive if θ1 < 0  

• spike is negative if θ1 > 0 

Tails off (Exponential decay):  

• negative if θ1 > 0  

• alternating in sign starts (+) if θ1 < 0 

MA(q) Cuts off  (spikes at lags 1 to q then 

cuts off after lag q) 

Tails off  (Exponential decay or damped 

sinewave) 

ARMA(p, q) Tails off (Exponential decay) Tails off (Exponential decay) 

 

The potential models are identified by first setting boundaries on the ARIMA 

parameters.  As previously discussed, it is generally not necessary to use parameters 

greater than two.  Restricting the ARIMA parameters to the values listed in Table 6 yields 
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the 27 models listed in Table 7.  The next phase of the Box-Jenkins methodology is Phase 

II (estimation and testing). 

Table 6:  ARIMA Model Parameters 

ARIMA 

parameter 

Minimum Maximum 

p 0 2 

d 0 2 

q 0 2 

 

Table 7:  Potential ARIMA Models 

AR(1)   AR(2)   MA(1)   MA(2)   

ARMA(1, 1)   ARMA(1, 2)   ARMA(2, 1)   ARMA(2, 2)   

ARI(1, 1)   ARI(1, 2)   ARI(2, 1)   ARI(2, 2)   

IMA(1, 1)   IMA(1, 2)   IMA(2, 1)   IMA(2, 2)   

ARIMA(0, 0, 0)   ARIMA(1, 1, 1)   ARIMA(1, 1, 2)   ARIMA(1, 2, 1)   

ARIMA(1, 2, 2)   ARIMA(2, 1, 1)   ARIMA(2, 1, 2)   ARIMA(2, 2, 1)   

ARIMA(2, 2, 2)   I(1)   I(2)     

 

Phase II – Estimation and testing 

In this phase the parameters are estimated in potential models, then the best model 

is selected based on suitable criteria.  Finally, diagnostic tests are conducted to ensure the 

model meets the underlying assumptions.  With our list of potential models from Table 7 

we can use computer programs to find appropriate initial estimates.  The software used in 

this research is JMP ® version 11.  The JMP Specialized Models guidebook explains the 

estimation process, “the [ARIMA] models are fit by maximizing the likelihood function, 

using a Kalman filter to compute the likelihood function” (JMP®, 2013: 162). 

For each parameter estimate (  ) there is also a standard error (   ) (Bowerman & 

O'Connell, 1993).  A significance test is conducted with these two values with (alpha = 
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0.05).  The t-ratio is shown in Equation 23 utilizing the following hypothesis test 

(Bowerman & O'Connell, 1993): 

 H0: θ   0.  The parameter is equal to zero (not significantly different than zero). 

 Ha: θ ≠ 0.  The parameter is not equal to zero (significantly different than zero). 

Equation 23:  ARIMA Parameter Test Statistic 

  
 

   

 
 

If the p-value is less than alpha, the parameter is not equal to zero (significantly 

different than zero).  If the p-value is greater than alpha the parameter is not significantly 

different than zero.  Generally, a t-ratio of at least 2 in absolute value will be considered 

significant (JMP, 2013: 166).  The AR parameter was tested for significance as exhibited 

in Figure 8.  In this example, the parameter is not equal to zero (0.0001 < 0.05), therefore 

this model’s AR (1) parameter is significant. 

 
Figure 8:  AR Model Parameter Estimates 

Model Rank 

There may be more than one valid model out of the twenty-seven considered.  We 

need a method to determine the best model.  The recommended approach is a method that 

prevents over-fitting by adding a penalty for adding more explanatory variables.  For 

ARIMA models the likelihood (L) is penalized for added terms (parameters) (Makridakis, 
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Wheelwright, & Hyndman, 1998).  Two criteria are provided by JMP ® 11: the Akaike’s 

Information Criterion (AIC) and the Schwarz’s Bayesian Criterion (SBC or BIC) (2013).  

These measures are computed as follows (Makridakis, Wheelwright, & Hyndman, 1998): 

Equation 24:  Akaike’s Information Criterion (AIC) 

               

Equation 25:  Schwarz’s Bayesian Criterion (SBC) 

                   

Where n is the number of observations and m = the number of parameters in the 

model (including the intercept) (Makridakis, Wheelwright, & Hyndman, 1998).  Lower 

AIC or SBC values indicate a better fitting model (JMP, 2013).  Figure 9 depicts an 

individual model summary whereas Table 8 summarizes multiple models.  Out of the 

eight models compared, the AR(1) has the lowest AIC and SBC.  Therefore AR(1) is 

deemed the best model.  The AIC and SBC are similar measures, for simplicity this 

research uses the lowest AIC to select the best model. 

 
Figure 9:  AR Model Summary 
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Table 8:  ARIMA Model Comparison 
Model DF Variance AIC SBC R Square  -2LogLH Weights MAPE MAE 

AR(1)   69 0.00151 -256.39 -251.86 0.681 -260.39 0.6125 2.145 0.019 

ARMA(1, 1)   68 0.00153 -254.69 -247.90 0.682 -260.69 0.2616 2.178 0.019 

ARIMA(1, 1, 1)   67 0.00147 -252.48 -245.73 0.676 -258.48 0.0866 2.312 0.021 

IMA(1, 1)   68 0.00162 -248.83 -244.33 0.658 -252.83 0.0139 2.267 0.021 

ARI(1, 1)   68 0.0016 -248.68 -244.18 0.657 -252.68 0.0129 2.236 0.020 

I(1)   69 0.00165 -248.57 -246.32 0.651 -250.57 0.0122 2.235 0.020 

MA(1)   69 0.00254 -220.27 -215.74 0.452 -224.25 0 3.480 0.031 

ARIMA(0, 0, 0)   70 0.00468 -178.35 -176.095 0 -180.35 0 4.986 0.045 

 

Diagnostic Checking 

Now that we have chosen the best model, the following diagnostics must be 

conducted to determine if the residuals are white noise (Makridakis, Wheelwright, & 

Hyndman, 1998).  The objective is to find no significant autocorrelations or partial 

autocorrelations when checking the residuals’ ACF and PACF (Makridakis, 

Wheelwright, & Hyndman, 1998).  The first step is a visual inspection of the residuals’ 

ACFs and PACFs plot.  If any ACFs or PACFs (except lag 0) are outside the acceptable 

range we reject the null and conclude the model’s residuals are not white noise.  The next 

step is an additional check that involves the Ljung-Box test of the following hypothesis: 

 H0: The residuals are independently distributed.  The residuals are white noise. 

 Ha: The residuals are not independently distributed; the residuals are not white 

noise. 

If the p-value is less than alpha (0.05) we reject the null, if it is greater than alpha 

we fail to reject the null and conclude the residuals are white noise.  In the example from 
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Figure 10, the p-values are greater than the alpha.  We fail to reject the null and conclude 

that the residuals are from white noise.  Once the diagnostic checks are passed the model 

is deemed adequate, therefore it is not necessary to further modify the model 

(Makridakis, Wheelwright, & Hyndman, 1998).  The model can now be used to forecast. 

 
Figure 10:  Plots of ACF and PACF for Residuals 

Phase III – Application 

Forecasting with the model is straight forward.  The prediction equation will 

depend on the model type selected.  In practice the user chooses the model based on the 

previous steps then relies on the software to calculate the forecasted values.  The forecast 

values are based on the number of significant lags and forecasted periods.  With the 

exception of the intercept, the number of lags must be more than one, but less than the 

number of observations (see Figure 8).  In Phase I the user can decide the number of lags 
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to be considered.  Unlike in the beginning of the analysis, the software does not allow the 

user to change the lagged periods used in the prediction formula.  This research uses the 

model’s first forecasted value (next month) as a performance factor in the time estimate 

formula (time estimate = planned duration/performance factor (PF)). 

Time Series Summary 

In 2011, AFIT student C. Grant Keaton used time series analysis to detect 

changes in the CPI and SPI to evaluate a contract’s performance.  This literature review 

has not discovered any studies that applied time series analysis to forecast the duration of 

DoD programs.  In this research, time series analysis is used to forecast values based on 

previous period’s data rather than the current period’s index value (SPI, SPI(t) or CPI).  If 

the pattern from previous periods is different than the cumulative index value then the 

forecasted value will be different.  The difference will lead to different and possibly more 

accurate duration forecasts.   

The Box-Jenkins approach is a robust method and is easy to implement if the user 

has access to the proper software.  The strength is the systematic procedure used to 

determine the model that best fits the data.  Given this robustness, ARIMA models are 

arguably the most accurate time series forecasting method (Montgomery, Johnson, & 

Gardiner, 1990).  Beyond the assumptions already listed, ARIMA models, like all 

models, have weaknesses.  On the technology side, many practitioners will not have 

access to JMP® or other powerful statistical software.  The open source R statistical 

software contains the capability to conduct time series analysis, but it may have a steeper 

learning curve than commercial off the shelf software.  The book Predictive Analytics by 
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Carlberg (2013) provides software add-ins that make times series analysis easier in Excel; 

unfortunately, that package is not as efficient as JMP ®11.  In addition to the software 

concerns, some of the time series concepts are complex thus making this method 

inaccessible if the practitioner does not have a working knowledge of forecasting.  The 

largest potential downside is complex techniques such as ARIMA models are not 

guaranteed to significantly improve accuracy over simpler techniques (Makridakis, 

Wheelwright, & Hyndman, 1998). 

Schedule Forecasting:  Kalman Filter Forecasting Method 

In 2007, Kim developed a new schedule forecasting technique, the Kalman filter 

forecasting method (KFFM).  The KFFM assesses a project’s progress and calculates a 

probability distribution for the duration at completion (Kim, 2007).  In simple terms, the 

KFFM is a hybrid of Earned Schedule (ES) and a Kalman filter (Kim, 2007).  According 

to Kim, “the Kalman filter is a recursive algorithm used to estimate the true state, but 

hidden state of a dynamic system using noisy observations (2007: 23).  Rudolph Kalman 

wrote the seminal paper in 1960; the Kalman filter has been applied to broad areas 

including autonomous or assisted navigation (Welch & Bishop, 2001).  The Kalman filter 

application to schedule estimating is relatively new and has not been applied to DoD 

programs (Kim, 2007).  The KFFM provides a probabilistic framework that incorporates 

actual performance data being generated by a project (earned value) and prior knowledge 

of the program (planned value) to forecast the project’s future progress (Kim & 

Reinschmidt, 2010).   
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The Kalman filter approach used by Kim will be discussed (2007).  The 

foundation of the KFFM is a recursive algorithm that uses prior and posterior information 

to continuously update estimates via a learning cycle shown in Figure 11 (Kim, 2007; 

Kim & Reinschmidt, 2010).  Within the Kalman filter framework, the state of the 

dynamic system is represented by two sets of variables: the state variables (xk) and the 

error covariance variables (Pk) (Kim, 2007; Kim & Reinschmidt, 2010).  The error 

covariance is a measure of the uncertainty in the estimates of the state variables (Kim, 

2007).  According to Kim, “the states and covariance are updated through two stochastic 

linear models: the measurement model and the system model” (2007: 24).  The 

measurement model updates the prior estimate with new information (zk) to correct the 

estimate (resulting in the posterior estimate) (Kim, 2007).  Kim further describes the 

process as “the system model predicts the future state of the system at the next time 

period” (2007: 24).   

 

KFFM Process 

Figure 11 outlines the KFFM process while Table 9 lists the variables and 

equations used in Kim’s study (2010).  The process begins with the initial estimates of 

the state vector and error covariance (Kim & Reinschmidt, 2010).  The state vector is a 

2x1 matrix: the time variance at time k (TVk) and its rate of change from the previous 

period (dTVk / dt) (Kim & Reinschmidt, 2010).  The initial state vector (xk) and error 

covariance (P0) are estimated as zero because it is assumed the known uncertainty is 

incorporated (Equation 26) (Kim & Reinschmidt, 2010). 
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Equation 26:  Kalman Filter Initial Estimates 

     
 
 
         

  
  

  

 
Figure 11:  Recursive Learning Cycle of the Kalman Filter 

The process noise variable Q adjusts the Kalman gain (K); the Q is estimate based 

on the mean of the initial estimated duration (Kim & Reinschmidt, 2010).  The initial 

estimate can be derived from a three point Program Evaluation and Review Technique 

(PERT) estimate, listed in Equation 27 and Equation 28 (Kim & Reinschmidt, 2010).  In 

this example the process noise (q) equals 0.694 (the variance is (0.83)
2
 = 0.694) 

(Equation 29). 

Equation 27:  PERT Estimate (Mean) 

      
      

 
  

                    

 
            

Equation 28:  PERT Estimate (Standard Deviation) 
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Equation 29:  Process Noise Matrix 

    
  
  

  

 

Table 9:  Kalman Filter Forecasting Model Components 

Components Equations Description 

State vector 
    

   

       
  

 

TVk = TV that is defined as the 

earned schedule minus the time of 

forecasting. 

Dynamic 

system model 
               

 

    
   
  

           
 

    
  

Ak=transition matrix. wk−1=vector 

of random process noise and 

wk−1=random error term for the 

derivative of the TV. 

Measurement 

model 
          

 
                        

H=observation matrix. vk=vector 

of random measurement noise and 

vk=random error term for the 

measurement zk. 

Prediction 

process 
   

        
  

 
  

       
         

Before observing a new TVk at 

time period k, the prior estimates 

of the state vector and the error 

covariance matrix P are calculated. 

Qk−1=process noise covariance 

matrix. 

Kalman gain      
       

       
   Kalman gain at time period k, 

which is determined in such a way 

that minimizes the posterior error 

covariance matrix. 

Rk=measurement error covariance 

matrix. 

Updating 

process 
   

     
            

   
 

  
           

  

The posterior estimates of the state 

vector and the error covariance 

matrix are calculated using the 

Kalman gain. 

 

The variance of measurement error is the error associated with the measurement 

process (vk); unless known, this variable is also estimated with PERT (Equation 30) (Kim 

& Reinschmidt, 2010): 
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Equation 30:  Variance of Measurement Error 

                
      

 
 

 

 
  

 
 

Maximum vk = a 

Minimum vk = -a 

Kim and Reinschmidt used a measurement error of ± 3 months so Rk = 1.0 

(2010).  This value can be increased or decreased based on the program manager’s 

confidence in the reliability of the data source (Kim & Reinschmidt, 2010).  The Rk 

simplifies to the r (the measurement error variable) displayed in Equation 31 (Kim & 

Reinschmidt, 2010): 

Equation 31:  Measurement Error Matrix 

       

The steps outlined in Figure 11 and the calculations listed in Table 9 have been 

programmed into KEVM Lite ©, a Microsoft Excel based tool developed by Kim (2010).  

KEVM Lite © is used in this research to compute duration estimates. 

KFFM Applied to Schedule Forecasting 

Kim’s study used EVM data as the inputs for the KFFM (2007).  Specifically the 

following parameters are used: budget at completion (BAC), planned value (PV), earned 

value (EV), planned duration (PD), and the reporting date (t).  Then Earned Schedule 

(ES) is used as an input into the estimated duration at completion EDAC (t) formula.  The 

EDAC (t) is forecasted at a point in time (t), which is each month in this study (Kim & 

Reinschmidt, 2010).  The KFFM applies an algorithm to ES and EVM data to predict 

three EDAC (t) curves shown in Figure 12: the mean, the upper bound, and the lower 
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bound (Kim & Reinschmidt, 2010).  Additionally, a probability of schedule slippage 

(PrSS) is computed.  In the same 2010 study Kim and Reinschmidt used two real projects 

(a gas plant and a refinery plant) to show the KFFM in action.   

 
Figure 12:  Kalman Filter Forecasting 

Kim and Reinschmidt compared the Earned Schedule (ES) method (PD/SPI(t)) to 

the KFFM (2010).  In that study, the KFFM outperforms the ES method in terms of 

consistent estimates; furthermore, the ES method shows erratic tendencies in the monthly 

trend analysis (Kim & Reinschmidt, 2010).  Kim and Reinschmidt state, “improved 

forecasting methods based on proven state-of-the art techniques should lead to better 

project management decisions and improved project performance” (2010: 842).  

Although the study has merit, it is not without limitations.  The primary limitation is a 

small sample size (two projects).  For the purposes of this thesis, another limitation of the 

Kim and Reinschmidt study is the relatively short planned durations of the projects 
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studied (24 and 25 months).  Additionally, DoD programs were not examined.  This 

research will apply the KFFM to lengthier projects and a different type of project (DoD). 

Schedule Forecasting:  Improving the Planned Duration Estimate 

According to the GAO Schedule Assessment Guide, “the baseline schedule 

includes… original forecasts for activity start and finish dates, … original estimates for 

work, resource assignments, critical paths, and total float [slack] (2012: 136).  The 

current schedule includes new tasks (added since the baseline schedule) and should 

include updates from actual performance data to forecast the remaining work (GAO, 

2012).   Using the baseline schedule as a benchmark to assess the project’s schedule 

performance is a GAO best practice (GAO, 2012).  Lastly, the baseline schedule is used 

with the critical path method (CPM) to estimate the project’s duration (Integrated Master 

Schedule (IMS) planned duration). 

In 2014, Lofgren introduced an approach to improve the IMS planned duration 

estimate.  Lofgren argues the importance of the baseline schedule plan on three points: 

the planners know the major activities, well defined process exists to develop the system, 

and the Integrated Baseline Review (IBR) allows the contractor and program office to 

agree on the reasonableness of the baseline plan (2014: 3).  Therefore a project’s baseline 

from the initial IMS is an important benchmark for the entire project.  Lofgren analyzed 

12 MDAP contracts with 133 schedule observations (individual IMSs) (2014: 2).  

Supporting chapter one’s discussion on schedule growth, Lofgren found many schedule 

estimates were overly optimistic compared to actual performance.  In this study, schedule 

performance (completing tasks on time) rarely improves with project maturity (Lofgren, 
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2014).  Aside from schedule performance, the overall health of the schedule can provide 

insight.  One health check is the % of tasks are coded as hard constraints with a goal of 

less than 5%.  Lofgren’s study discovered the majority of IMSs did not meet the hard 

constraint metric (2014: 6).  Another health check is schedule logic; every task must have 

a predecessor or successor (GAO, 2012).  The metric is met if the project has less than 

5% of its tasks with missing predecessors and successors (Lofgren, 2014: 7).  An IMS 

that does not meet the 5% metric indicates an improperly maintained plan and is likely to 

lead to inaccurate duration estimates.  In spite of the relatively poor quality of the IMSs, 

Lofgren not only attempts to improve the accuracy of the estimated completion date 

(ECD), he also attempts to provide the ECD earlier in the project (2014: 7). 

Lofgren’s framework relies on a proposed metric, schedule slip, which is added to 

the planned duration estimate.  The first step of this process sets the baseline as the 

benchmark (Lofgren, 2014).  Each subsequent month’s IMS data was compared to the 

baseline IMS to determine the schedule slip; the schedule slip is added to the reported 

completion date as depicted in Figure 13 (Lofgren, 2014).   

The schedule slip metric displayed in Table 10 was derived from Lofgren’s 

framework (2014).  In this example, 4.2 months are added to the IMS planned duration of 

49.1 months for a total of 53.3 months.  For comparison purposes, the contractor 

performance (CPR) planned duration value was 49.0 months.  The following is a list of 

equations used to develop Table 10.  

Equation 32:  Schedule Slip 

Schedule Slip = Max [Current Finish Date – Baseline Finish Date – Total Slack] 

Equation 33:  IMS Planned Duration 
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IMS planned duration = start date from CPR to IMS reported end date 

Equation 34:  CPR Planned Duration 

CPR Planned Duration = start date from CPR to Estimated Completion Date from CPR 

Equation 35:  Independent Duration Estimate 

Independent Duration Estimate = IMS planned duration + schedule slip estimate 

Equation 36:  Enhanced IDE 

Enhanced IDE = IDE/PF 

 
Figure 13:  Schedule Slip Method 

Incorporating the IMS PD and the baseline analysis by Lofgren appears to be an 

improvement over the IMS PD by itself.  Lofgren’s study demonstrated improved 

accuracy and timeliness over the contractor’s reported duration estimate.  Although the 

commodity and contract type were not mentioned, the database is comprised of MDAP 
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contracts thus the results may be generalizable to this research.  A weakness of this 

approach is it is labor intensive.  The key argument against conducting an in-depth 

schedule analysis is that is a labor intensive process.  If time is scarce it may make more 

sense to only use this approach when the IMS PD changes.  This approach may reduce 

the task frequency from monthly to quarterly.  Another potential weakness is the fact that 

the baseline IMS is not usually available until after the integrated baseline review (IBR) 

(3 to 6 months into the contract) which may make this technique less useful for short 

duration contracts. 

Table 10:  IMS Analysis (Current Month Compared to Baseline) 

Task Name 

Baseline 

Finish 

(IMS #1) 

[4/15/08] 

Baseline 

Total 

Slack 

Current 

Finish 

(IMS #2) 

[5/20/08] 

Finish 

Variance 

(days) 

Slip 

(days) 

Slip 

(months) 

ASIC Build 1-2-3-4 Integration 01/30/08 9 05/02/08 92 83 2.77 

PSP Develop Test Cases 1 06/02/08 -47 06/02/08 0 47 1.57 

IO : Det Design (S2) Ph 1 05/16/08 -80 07/02/08 46 126 4.20 

        MAX 126 4.20 

 

This research uses Lofgren’s framework; the schedule slip is added to the current 

IMS planned duration to obtain an independent duration estimated (IDE), then the IDE 

and the performance factors are used to calculate an enhanced IDE (Enhanced IDE = 

IDE/PF). 

Baseline Execution Index (BEI) 

Related to Lofgren’s method is the concept of the Baseline Execution Index 

(BEI).  The Baseline Execution Index (BEI) is a trend metric defined as “the ratio of 

[baseline] activities that were completed to the number of [baseline] activities that should 
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have been completed by the status date” (GAO, 2012: 148).  Three outcomes can be 

concluded based on the value of the BEI (GAO, 2012: 148): 

 BEI = 1 (the project is adhering to schedule)  

 BEI < 1 (the project is behind schedule)   

 BEI > 1 (the project is ahead of schedule) 

The BEI does not measure a project’s overall task completion per se, it is 

concerned with the completion of only the baselines tasks.  Eventually as the project 

matures the BEI will converge to one possibly reducing the metric’s usefulness in the late 

stages of a contract.  This phenomenon is a weakness comparable to the SPI.  The BEI 

relies on the concept that the baseline plan is important to the overall performance of the 

project.  With that in mind, the BEI is used as a performance factor (PF) in this research.  

The BEI was calculated with the National Aeronautics and Space Administration’s 

(NASA) Schedule Test and Assessment Tool (STAT) and the IMS.  STAT is a Microsoft 

® Project add-in.  Finally, the BEI is considered an EVM metric.  However, the BEI was 

not discussed in the forecasting literature.  This research attempts to fill the void in the 

literature.   

Summary 

In this chapter the relevant literature was reviewed to determine the existing 

methods used to forecast project duration.  Based on this research, Earned Schedule 

appear to be the best EV index based method.  Although ES has been studied extensively, 

its use in forecasting DoD program duration has not been studied as frequently.  The 

application of time series analysis with EVM data has been studied on a limited basis in 
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the DoD (Keaton, 2011).  However, using time series analysis and EVM data to forecast 

the duration of space programs has not been studied.  The KFFM has been used 

successfully for a limited number of construction type projects, but not for DoD projects.  

IMS analysis is a recent addition to developing duration estimates; further research is 

necessary to validate the method on space and development contracts.  Finally, using the 

BEI to forecast duration does not appear in the literature.  This research will attempt to 

fill these voids in the literature by using EVM index based methods (CPI, SPI, SPI(t), and 

BEI), time series forecast based on EVM indices (CPI, SPI, SPI(t), and BEI), Kalman 

filter forecasts based on Earned Schedule, and IMS analysis to develop independent 

duration estimates (IDEs).  In the next chapter the specific methodology for each 

technique is discussed. 
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III.  Methodology 

Chapter Overview 

This analysis uses Contractor Performance Report (CPR) data to develop schedule 

estimating models.  The purpose of this chapter is to discuss the approaches used to 

develop the estimating models.  First, the data, data source, and data limitations are 

discussed.  Next, the forecasting methods are described: EVM index based, EVM index 

based plus time series, regression, Kalman filter, and the independent duration estimate 

(IDE). Finally, the evaluation section explains how the duration forecasting models are 

evaluated. 

Data and Data Source 

The EVM Central Repository (EVM-CR) is the primary source of data for this 

research.  The Defense Cost and Resource Center (DCARC) website describes the EVM-

CR as a joint effort between DCARC and Office of the Under Secretary of Defense for 

Acquisition, Technology, and Logistics (OUSD/AT&L), and is managed by Performance 

Assessment and Root Cause Analysis (PARCA) (Defense Cost and Resource Center 

(DCARC), 2014).  The EVM-CR provides:  

 Centralized reporting, collection, and distribution for key acquisition EVM 

data. 

 A reliable source of authoritative EVM data and access for The Office of the 

Secretary of Defense (OSD), the Services, and the DoD Components. 

 Houses Contract Performance Reports (CPRs), Contract Funds Status Report 

(CFSR), and the Integrated Master Schedules (IMS) submitted by contractors 
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(and reviewed and approved by Program Management Offices) for ACAT 1C 

& 1D (MDAP) and ACAT 1A (MAIS) programs. 

 Approximately 80 ACAT 1A, 1C, and 1D programs and 210 contracts and 

tasks reporting data (Defense Cost and Resource Center (DCARC), 2014). 

Figure 14 provides a graphic representation of the EVM-CR (Defense Cost and 

Resource Center (DCARC), 2014).  As discussed in the previous chapter, the primary 

EVM data of interest for schedule assessment are: Budget at Complete (BAC), program 

start date, the estimated completion date (ECD) for the program, Budgeted Cost of Work 

Performed (BCWP), Budgeted Cost of Work Scheduled (BCWS), and the Integrated 

Master Schedule (IMS). 

The programs of interest were selected based on commodity and contract type: 

DoD space programs and development contracts.  The commodity filter narrowed the 

results to thirteen initial programs listed in Table 11.  The following three programs were 

removed because the EVM-CR did not contain development contracts for them: the 

Enhanced Polar System (EPS), Evolved Expendable Launch Vehicle (EELV), and 

National Polar-Orbiting Operational Environmental Satellite System (NPOESS).  The 

next data criteria are completed contracts or contracts that were reported as 90% 

complete or greater.  The 90% number was used as a benchmark for near complete 

because the Selected Acquisition Report (SAR) does not require contracts past 90% 

complete to report progress.  As a result of these criteria, the following programs were 

eliminated:  Family of Advanced Beyond Line-of-Sight Terminals (FAB-T), Global 

Positioning System III (GPS III), Global Positioning System Next Generation 
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Operational Control System (GPS OCX) Phase B, and Military GPS User Equipment 

(MGUE).  The Advanced Extremely High Frequency Satellite (AEHF) and Space-Based 

Infrared System High Component (SBIRS HIGH) were included in this analysis because 

they were considered near complete at 99 and 96 percent complete.  Table 12 shows the 

six programs and ten contracts that were analyzed. 

 
Figure 14:  EVM Central Repository Overview 

The contracts were classified as stable or unstable in an attempt to answer the 

research question, “are the forecasts accurate for contracts with Over-Target-Baselines 

(OTBs)?”  Table 13 shows programs without an OTB while Table 14 lists programs with 

OTBs.  Further analysis by system type (surveillance, communication, or navigation) was 

considered, but ultimately was not conducted because the dataset was already limited in 

size.  
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Table 11:  Initial Space System Programs 

Program Name 

Number 

of 

Contracts 

Development 

Contracts 

Advanced Extremely High Frequency Satellite (AEHF) 2 1 

Enhanced Polar System (EPS) 2 0 

Evolved Expendable Launch Vehicle (EELV) 2 0 

Family of Advanced Beyond Line-of-Sight Terminals (FAB-T) 6 1 

Global Positioning System III (GPS III) 2 1 

Joint Tactical Networks (JTN) - Army 5 1 

Military GPS User Equipment (MGUE) 3 3 

Mobile User Objective System (MUOS) - Navy 1 1 

National Polar-Orbiting Operational Environmental Satellite 

System (NPOESS) 1 0 

Navstar Global Positioning System (Navstar GPS) 4 3 

Next Generation Operational Control System (GPS OCX) 3 3 

Space-Based Infrared System High Component (SBIRS High) 5 1 

Wideband Global SATCOM (WGS) 2 2 

Total 38 17 

 

Table 12:  Contracts Analyzed 

Program Contract Task 

Data 

Points 

Advanced Extremely High Frequency Satellite (AEHF) F04701-02-C-0002 SDD 144 

Mobile User Objective System (MUOS) - Navy N00039-04-C-2009 CLIN 0400 55 

Next Generation Operational Control System (GPS 

OCX) FA8807-08-C-0001 

System 

Design 21 

Next Generation Operational Control System (GPS 

OCX) FA8807-08-C-0003 

System 

Design 24 

Navstar Global Positioning System (Navstar GPS) FA8807-06-C-0001 MUE 71 

Navstar Global Positioning System (Navstar GPS) FA8807-06-C-0003 MUE 68 

Navstar Global Positioning System (Navstar GPS) FA8807-06-C-0004 MUE 70 

Space-Based Infrared System High Component (SBIRS 

High) F04701-95-C-0017 RDT&E 212 

Wideband Global SATCOM (WGS) FA8808-06-C-0001 Blk 2 87 

Wideband Global SATCOM (WGS) FA8808-10-C-0001 B2FO 43 
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Table 13:  Contracts without an OTB 

Program Contract 

GPS OCX  FA8807-08-C-0001 

GPS OCX  FA8807-08-C-0003 

WGS FA8808-06-C-0001 

WGS  FA8808-10-C-0001 

 

Table 14:  Contracts with One or More OTB 

Program Contract OTBs 

AEHF F04701-02-C-0002  3 

MUOS N00039-04-C-2009 3 

NAVSTAR GPS  FA8807-06-C-0001  1 

NAVSTAR GPS  FA8807-06-C-0003  4 

NAVSTAR GPS  FA8807-06-C-0004 1 

SBIRS HIGH  F04701-95-C-0017  4 

 

Data Limitations 

Although monthly CPRs are reviewed by the program management office prior to 

being entered into the EVM-CR, the data may contain inaccuracies.  The data used in this 

analysis were reviewed for logic and accuracy.  The key finding was missing data.  For 

missing values, linear interpolation was used (prior reported value, next reported value, 

and the time elapsed between the two periods).  The lists of missing data are located in 

Appendix A (Table 44 to Table 61). 

Forecasting Method:  EVM Index Based 

The duration estimate is called the Time Estimate at Completion (TEAC).  The 

index based TEACs have the following form: 
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Equation 37:  Time Estimate at Completion (TEAC) 

TEAC = IMS PD/PF 

Where the IMS PD is the planned duration as reported in that month’s IMS and PF is one 

of the earned value index performance factors.  The IMS planned duration is calculated 

as follows: the days between the reported contract start date and the IMS completion 

date.  The days are then converted to months.  Table 15 lists the performance factors 

(PFs) that are used in this analysis.  Time series performance factors are denoted by T.S.  

The SPI(t) metric was calculated with Lipke’s earned schedule calculator from the 

Earned Schedule website (http://www.earnedschedule.com/Calculator.shtml). 

Table 15:  List of Performance Factors 

Name Static  Time Series 

Baseline Execution Index BEI BEI (T.S.) 

Schedule Performance Index SPI SPI (T.S.) 

Cost Performance Index CPI CPI (T.S.) 

Earned Schedule SPI SPI(t) SPI(t) (T.S.) 

Schedule Cost Index SPI*CPI SPI (T.S.)*CPI (T.S.) 

Schedule Cost Index (ES) SPI(t)*CPI SPI(t) (T.S.) *CPI (T.S.) 

Enhanced Schedule Cost Index BEI*CPI*SPI BEI*CPI (T.S.)*SPI (T.S.) 

Enhanced Schedule Cost Index (ES) BEI*CPI*SPI(t) BEI (T.S.)*CPI (T.S.)*SPI(t) (T.S.) 

Enhanced CPI BEI*CPI BEI (T.S.)*CPI (T.S.) 

Enhanced SPI BEI*SPI BEI (T.S.)*SPI (T.S.) 

Enhanced SPI(t) BEI*SPI(t) BEI (T.S.)*SPI(t) (T.S.) 

 

Forecasting Method:  EVM Index Based plus Time Series Analysis 

Time series analysis was conducted with JMP® 11.0 to estimate the CPI, SPI, 

SPI(t), and BEI parameters.  The Box-Jenkins methodology for ARIMA models was used 

for this time series analysis.  The Box-Jenkins methodology consists of three phases:  

http://www.earnedschedule.com/Calculator.shtml
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Identification, Estimation and Testing, and Application (Makridakis, Wheelwright, & 

Hyndman, 1998). 

Initiating the Analysis 

Prior to conducting the analysis, the number of autocorrelation lags and forecast 

periods must be determined.  The number of autocorrelation lags will be n-1 until a 

maximum of 25 is reached.  For example, the SPI(t) at month 20 will have 19 

autocorrelation lags to calculate a forecasted SPI(t).  Month 30 will use a maximum of 25 

lags in the analysis.  The number of forecast periods is one (the next period).  With the 

autocorrelation lags and forecast periods determined we begin the analysis using the 

Time Series command in JMP® 11.  The initial output of the analysis is a plot of the data 

as depicted in Figure 15. 

 
Figure 15:  CPI Time Series Graph 

Phase I - Identification 

Data Preparation 

The analysis begins with an examination of the ACFs and PACF for stationarity. 

Figure 16 shows a stationary time series while Figure 17 shows a potential non-stationary 
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time series.  When a visual examination of the ACF graph does not provide conclusive 

results, the Augmented Dickey-Fuller test (ADF) can be used.  The ADF test determines 

stationarity with a mathematical test.  A negative value denotes a stationary time series.  

We can refer back to Figure 15 and conclude that this time series is stationary because 

single mean and trend ADFs are negative.  If necessary, differencing can be used to 

remove non-stationarity in Phase II. 

 
Figure 16:  Plots of ACF and PACF (Stationary) 

 

 
Figure 17:  Plots of ACF and PACF (potential non-stationary) 
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Model Selection 

The model selection stage requires an examination of the time series graph, ACF, 

and PACF plots to identify potential models.  Figure 16 shows a strong candidate for an 

autoregression (AR) model.  The JMP® ARIMA Model Group function is an aid to the 

model selection process because it can be used to compare multiple models at once.  As 

discussed in Chapter two, with the parameters from Table 6 we can produce twenty seven 

potential models (listed in Table 7).  After each month of data is analyzed, the diagnostics 

are produced.  Each of the twenty seven models from Table 7 will be considered.  These 

models will be entered into JMP® ARIMA model group command which will generate 

an output similar to Table 16.   

Phase II – Estimation and Testing 

Estimation 

Each model’s usefulness is evaluated by the Akaike Information Criterion (AIC).  

Lower AIC values are associated with a better model (Makridakis, Wheelwright, & 

Hyndman, 1998).  In this analysis, the model with the lowest average AIC is deemed the 

best model and a candidate to forecast the performance factor.  However, a diagnostics 

check of the residuals must be conducted prior to using the model for forecasting. 

Diagnostics 

As previously discussed, in order for a forecasting model to be considered 

adequate, the residuals should be white noise.  Figure 18 shows this model’s residuals are 

from white noise because they are all within the range denoted by the blue line (alpha = 

0.05).  A more robust test is the Ljung-Box Q portmanteau test of residuals.  At an alpha 
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of 0.05, all of the values are not significant; therefore the residuals can be considered a 

white noise series.  If the model residuals are not considered white noise, then we will 

return to model selection stage and start the process again.  If the model residuals are 

from a white noise series we can proceed to forecasting with the model. 

Table 16:  Time Series Model Comparison 
Model DF Variance AIC SBC R Square  -2LogLH Weights MAPE MAE 

AR(1) 69 0.00151 -256.39 -251.86 0.681 -260.39 0.6125 2.145 0.019 

ARMA(1, 1) 68 0.00153 -254.69 -247.90 0.682 -260.69 0.2616 2.178 0.019 

ARIMA(1, 1, 1) 67 0.00147 -252.48 -245.73 0.676 -258.48 0.0866 2.312 0.021 

IMA(1, 1) 68 0.00162 -248.83 -244.33 0.658 -252.83 0.0139 2.267 0.021 

ARI(1, 1) 68 0.0016 -248.68 -244.18 0.657 -252.68 0.0129 2.236 0.020 

I(1) 69 0.00165 -248.57 -246.32 0.651 -250.57 0.0122 2.235 0.020 

MA(1) 69 0.00254 -220.27 -215.74 0.452 -224.25 0 3.480 0.031 

ARIMA(0, 0, 0) 70 0.00468 -178.35 -176.10 0 -180.35 0 4.986 0.045 

 

 
Figure 18:  Plots of ACF and PACF for Residuals 
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Phase III – Application 

Forecasting 

Because of limited data in the early periods, time series forecasts will not be used 

until month four.  For the first month, the reported value of the performance factor will be 

used.  For the second month, the average of months one and two will be used.  For the 

third month, the average of months one, two, and three will be used as the forecasted 

performance factor.  From month four going forward, we used the forecasting model 

selected in Phase II with a maximum of twenty-five lags.   

A fifty month contract should have forty-seven time series forecast values each 

for the index values (excluding months 1-3).  These forecasted index values will be used 

as performance factors (PF) in the time estimate at completion (TEAC = IMS PD/PF) for 

that period.   

Forecasting Method:  Linear Regression 

As discussed in Chapter Two’s linear regression section, this method regresses the 

BCWP against time (months).  The BAC is also regressed against time (months).  The 

regressions are calculated from month three until the last reported month for each 

contract.  For each monthly forecast, the next step is setting BCWP and BAC regression 

equations equal to each other to solve for the unknown month as displayed in Equation 

38.  After the intermediate calculation, the duration formula is simplified to Equation 39.  

If the BAC changed by more than 10% from one period to the next the analysis is reset.  

This means the analysis starts anew, the previous data points are not included in the 
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regression calculations going forward.  This approach helps smooth the forecast when 

large changes in BAC occur from one period to the next.  

Equation 38:  Regression Forecast (Intermediate Calculation) 

BCWP intercept +BCWP coefficient * Months = BAC intercept + BAC coefficient* Months 

Equation 39:  Duration Forecast (Regression Based) 

        
                            

                                  
 

Forecasting Method:  Kalman Filter Forecast Method 

The Kalman Filter Forecast Method was applied with the Excel tool KEVM 

Lite© developed by Kim (2010).  The planned duration, the time phased planned values 

(also called the performance measurement baseline (PMB)), and the confidence level are 

the inputs required for this method.  The confidence level is a decision variable; 95% was 

used in this analysis.  The planned duration is based on the reported Estimated 

Completion Date (ECD).  Portions of the PMB must be estimated if the monthly PMB is 

not known.  The time phasing of the planned values is developed with linear interpolation 

of the reported BAC and planned duration. 

After making the appropriate adjustments, the KEVM Lite © updates each 

month’s forecast.  This forecast contains a mean, upper bound (UB), and a lower bound 

(LB) for the time estimate at completion (TEAC).  In addition to the three TEAC 

estimates, the probability of schedule slip (PrSS) was calculated.  Examples of the TEAC 

estimates and PrSS are displayed in Figure 19; the mean value was used in this analysis.  
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Figure 19:  KEVM Lite © 

Forecasting Method:  Independent Duration Estimate (IDE) 

The final technique used in this analysis was derived from Lofgren’s research 

(2014).  The IMS planned duration will be modified and used with the performance 

factors to calculate an Independent Duration Estimate (IDE).  The schedule slip metric 

will be calculated with the formula in Equation 40 (Lofgren, 2014).  Each unfinished task 

is considered for the schedule slip.  As tasks are completed they are removed from 

consideration.  The results for one example contract are displayed in Table 17.  In this 

example, 4.2 months are added to the Integrated Master Schedule (IMS) planned duration 

of 49.1 months, for a total of 53.3 months.  This schedule slip is added to the current 

planned duration to obtain an independent duration estimated (IDE) as shown in Equation 
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43.  The IDE will be used with the performance factors to calculate a TEAC.  The 

following equations are used to calculate the parameters in Table 17.  These equations 

were previously listed in chapter two, they are listed again for clarity and convenience. 

Equation 40:  Schedule Slip 

Slip = Max (Current Finish Date – Baseline Finish Date – Total Slack) 

Equation 41:  IMS Planned Duration 

IMS planned duration = start date from CPR to IMS reported end date 

Equation 42:  CPR Planned Duration (status quo) 

CPR PD = start date from CPR to Estimated Completion Date from CPR 

Equation 43:  Independent Duration Estimate 

Independent Duration Estimate = IMS planned + schedule slip estimate 

Equation 44:  Enhanced IDE 

Enhanced IDE = IDE/PF 

Table 17:  IMS Analysis (Current Month Compared to Baseline) 

Task Name 

Baseline 

Finish 

(IMS#1) 

4/15/08 

Baseline 

Total 

Slack 

Current 

Finish 

(IMS#2) 

5/20/08 

Finish 

Variance 

(days) 

Slip 

(days) 

Slip 

(months) 

ASIC Build 1-2-3-4 Integrat. 01/30/08 9 05/02/08 92 83 2.77 

PSP Develop Test Cases 1 06/02/08 -47 06/02/08 0 47 1.57 

IO : Det Design (S2) Ph 1 05/16/08 -80 07/02/08 46 126 4.20 

        MAX 126 4.20 

 

Finally, if lapses in data occur the IMS PD will be used for the IDE (see 

Appendix A).  Lapses occurred most frequently in the beginning of the contract. 
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Evaluating the Forecasting Models (Accuracy, Timeliness, and Reliability) 

In order to determine the usefulness of the forecasting models an evaluation 

measure must be selected.  The evaluation measure used in this research is the Mean 

Absolute Percent Error (MAPE).  There are many forecasting evaluation measures, but 

the MAPE is arguably the easiest to explain and understand.  The MAPE formula is 

exhibited in Equation 45 (Makridakis, Wheelwright, & Hyndman, 1998).  In this 

equation, n equals the total number of observations (months) and t equals the time of the 

forecast. 

Equation 45: Mean Absolute Percentage Error (MAPE) 

                                      
 

 
                                  

Models with lower MAPE values (closer to zero) are more accurate.  For 

example, a MAPE of 0% represents a perfect forecast.  A MAPE of 15% means that the 

forecast is underestimating or overestimating the true value by 15% on average.  Figure 

20 displays one model’s [IDE / (SPI(t) (T.S.) * BEI] forecast compared to the status quo 

forecast (CPR PD); the IDE based forecast is more accurate than the status quo until the 

late stage of the program (80% to 100%).  Additionally, in order to assess the timeliness, 

the MAPE will be calculated in 10% intervals from 0% to 100%.   

Table 18 compares six models to the planned duration using the previously 

discussed metrics; partial results are displayed because of space constraints (43 models).  

For individual contracts the following forecast models are reported: the CPR PD, IMS 

PD, IDE, most accurate IMS PD/PF, most accurate IDE/PF, Regression, and Kalman 

filter method.  
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Figure 20:  Duration MAPE over Time 

 

Table 18:  Forecast Model Intervals and Overall MAPE 

Percent 

Complete 

Interval 

Forecasting Model 

CPR PD 

(status 

quo) 

IMS PD IDE IMS PD / 

[SPI(t) * 

CPI * BEI] 

IDE / 

[SPI(t) 

(T.S.) * 

BEI] 

Regress-

ion 

Kalman 

Filter 

0 to 10 52.72% 52.72% 52.72% 37.76% 49.55% 74.58% 52.72% 

11 to 20 52.72% 52.72% 52.72% 42.05% 47.91% 80.11% 52.72% 

21 to 30 51.75% 51.75% 51.75% 43.07% 42.10% 63.11% 48.86% 

31 to 40 50.26% 50.45% 43.34% 42.26% 40.10% 52.74% 52.42% 

41 to 50 47.04% 46.95% 29.00% 36.40% 23.83% 52.29% 46.07% 

51 to 60 40.82% 41.84% 17.38% 21.41% 7.72% 53.17% 44.53% 

61 to 70 19.57% 19.57% 14.61% 7.03% 6.86% 50.60% 35.93% 

71 to 80 11.16% 11.16% 11.16% 5.03% 10.06% 40.89% 27.36% 

81 to 90 0.00% 0.00% 8.32% 6.78% 5.07% 15.14% 0.71% 

91 to 100 0.00% 0.00% 4.33% 5.56% 6.08% 15.79% 1.20% 

MAPE 33.05% 33.16% 29.26% 25.14% 24.45% 50.57% 36.44% 
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 In addition to reporting the results of individual contracts, results are grouped 

into OTB versus non-OTB contracts (631 and 175 observations).  The analysis is further 

grouped by long duration (SBIRS and AEHF), medium duration (MUOS, NAVSTAR 

GPS, and WGS), and short duration contracts (GPS OCX).  The long duration group has 

356 observations, the medium duration group has 405 observations, and the short 

duration group has 45 observations.  The analysis is further categorized to contracts with 

the data necessary to create an IDE (7 of 10 contracts with 617 observations).  The IDE 

models will be compared to the other model types within the same data set (seven 

contracts).  The last grouping is an aggregate of forecasts across all contracts (this does 

not include IDE models because three contracts did not have available data); in this 

analysis there are 806 total forecasts for each model.  Finally, due to the potential for 

similar accuracy results the models were analyzed with the Tukey-Kramer HSD multiple 

comparison of means function via JMP®.  The purpose of this test is to determine if the 

means of the absolute percent errors (APEs) are significantly different from each other 

and different from the status quo.  The Tukey-Kramer HSD uses pooled variances; 

therefore, before proceeding we must determine if the variances are equal (JMP, 2013). 

Test for Unequal Variances: Levene Test 

We tested for unequal variances using the Levene’s test with an alpha of 0.05 and 

the following hypothesis: 

 H0: the variances are the same:  σ1
2
   σ2

2
    … σk

2
 

 Ha: at least one variance is different 
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If the p-value is greater than alpha we fail to reject the null and conclude the variances 

are equal.  If the p-value is less than alpha we reject the null and conclude at least one 

variance is different (JMP®, 2013). 

Multiple Comparisons of Means: Tukey-Kramer HSD  

We can use the Tukey-Kramer HSD method to compare means if the APEs are 

normally distributed (or the number of observations are greater than 30) and the variances 

are equal.  An alpha of 0.05 is used unless otherwise noted.  If the APEs are not normally 

distributed (or the number of observations are less than 30) or the variances are not equal 

it is recommend to use an alternative method. 

Summary 

This chapter described how the forecasting models were developed.  A 

description of the data source, data selected and its limitations was provided.  Next, we 

discussed the systematic approach to compute the status quo (CPR PD), EVM Index 

Performance Factors, EVM Index Performance Factors (Time Series based), linear 

regression, the Kalman Filter Forecast Method, and the Independent Duration Estimate 

(IDE).  In summary, this research utilizes five types of forecasting techniques: 

1. CPR PD (status quo) 

2. IMS PD and Enhanced IMS PD = IMS PD/PF (non-time series and time series) 

3. Linear Regression (Smoker, 2011) 

4. Kalman Filter Forecasting Method (Kim, 2007 & 2010) 

5. IDE (IDE = IMS PD + Schedule Slip) and Enhanced IDE = IDE/PF (non-time 

series and time series) (Lofgren, 2014) 
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The status quo is the base case and serves as a comparison for the relative 

accuracy of the other techniques.  The Kalman Filter and Regression methods are 

standalone techniques in this research and the results are easy to distinguish.  The IMS 

PD and IDE are similar because they both use the planned duration from the IMS plus the 

performance factors.  The distinguishing factor is the schedule slip metric in the IDE.  

Time series analysis was not a standalone model, but an addition to both the IMS PD and 

the IDE performance factors (PF).  Models with time series performance factors are 

denoted by T.S.  For example the model IMS PD/ [SPI(t)*BEI (T.S.)] has a BEI time 

series performance factor.  Finally, the model evaluation criterion was listed (MAPE) and 

the Tukey-Kramer HSD method was explained.  In the next chapter, the results of this 

analysis are reported. 
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IV.  Results and Discussion 

Chapter Overview 

In this chapter we review the research objective and investigative questions before 

reporting the accuracy of the schedule forecasting methods.  The objective is to evaluate 

forecasting methods for space program duration based on the following criteria: accuracy, 

reliability, and timeliness.  In support of the overarching research objective, the following 

questions were investigated: 

1. What are the appropriate methods to estimate a program’s duration? 

2. How should accuracy be measured and how accurate are the various schedule 

estimating methods (individual contract, overall, and by various groupings)? 

3. At what point in time (if at all) are the techniques more accurate than the status 

quo? 

4. Are the forecasts accurate for programs with one or more over target baseline 

(OTB)? 

The first question was exploratory in nature.  Several forecasting methods were 

studied, the strengths and weakness of the various models were discussed in chapters two 

and three.  The remaining questions comprise the bulk of the analysis; this chapter is 

dedicated to answering these questions. 

Forecast Model Accuracy Results 

All Contracts (No IDE Models) 

Table 19 lists the MAPE for each model for the entire data set (806 observations).  

This does not include Independent Duration Estimate (IDE) models.  The most accurate 
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model across the entire data set is an improvement of 2.93% over the status quo (26.14% 

vs. 23.22%).  With the exception of the regression approach (36.43%), each of the 

models lie within a narrow range (23.22% to 26.14%).   

Table 19:  MAPE - All Contracts (No IDE Models) 

Forecasting Model MAPE 

IMS PD/ [SPI(t) (T.S.)*BEI] 23.22% 

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.25% 

IMS PD/ [SPI(t) (T.S.)] 24.30% 

IMS PD/ [SPI*CPI*BEI(T.S.)] 24.50% 

IMS PD/ [SPI*CPI*BEI] 24.52% 

IMS PD/ [SPI(t)] 24.59% 

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 24.66% 

IMS PD/ [SPI(t)*CPI*BEI] 24.75% 

IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 24.84% 

IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 24.87% 

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 24.89% 

IMS PD/ [SPI(T.S.)*CPI(T.S.)] 25.06% 

IMS PD/ [SPI(t)*CPI]  25.07% 

IMS PD/ [SPI(T.S.)] 25.11% 

IMS PD/ [SPI(t)*CPI(T.S.)] 25.14% 

IMS PD/ [SPI(t)(T.S.)*CPI] 25.20% 

IMS PD/ [SPI*CPI]  25.25% 

IMS PD/ [SPI(T.S.)*CPI] 25.26% 

IMS PD/ [SPI] 25.34% 

IMS PD 25.77% 

Kalman Filter 25.94% 

CPR PD (status quo) 26.14% 

Regression 36.43% 

 

Every model except regression was more accurate than the status quo.  However, 

because many of the values were clustered together we conducted a Tukey-Kramer HSD 

analysis of means.  Analyzing all of the models at once resulted in unequal variances.  In 

chapter three we discussed the necessity of equal variances before we could use the 

Tukey-Kramer HSD method.  We truncated the analysis to include the CPR PD and the 



77 

most accurate models.  The Levene test p-value was 0.9624, denoting equal variance (see 

Appendix B, Figure 36).  The results of the Tukey-Kramer analysis are displayed in 

Figure 21; examining the connecting letters report from top to bottom, the models that do 

not have a letter in common are significantly different.  Two models are significantly 

different from the status quo: [IMS PD/ SPI(t) (T.S.)*BEI(T.S.)] and [IMS PD/ SPI(t) 

(T.S.)* BEI].  These models are outlined with a blue box at the bottom of Figure 21. 

 
Figure 21:  Tukey-Kramer HSD - All Contracts 

When evaluating all contracts we can say the two models are more accurate than 

the status quo and the difference is not likely to be random.  The SPI(t) metric appears in 

both models reaffirming the research by Henderson (2004), Lipke (2004 & 2009), 

Vandevoorde and Vanhoucke, (2006), and Crumrine (2013).  Additionally, each of the 

models had at least one time series based performance factor.  Finally, the BEI appears in 

both of the models.  The BEI did not appear in the forecasting literature, nevertheless 

these results suggest it is a valuable duration forecasting parameter. 
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IDE Data Set (includes 7 of 10 contracts) 

Table 20 shows the results of the analysis of the seven contracts with IDE data.  

The two GPS OCX contracts and the AEHF contract did not have the IMS data suitable 

for developing IDEs.  For this analysis, the most accurate model exhibits an improvement 

of 5.2% over the status quo (26.47% vs. 21.27%).  Thirty-seven of the forty-three models 

are more accurate than the status quo.  The seven most accurate models are IDE based.  

These results suggest Lofgren’s approach (IDE) is the most accurate technique in this 

research. With the exception of regression (38.36%), the results fall within a range from 

21.27% to 27.21%.  Once again, many of the models were clustered.  Analyzing all of the 

models at once resulted in unequal variances.  We truncated the analysis to include the 

CPR PD and the most accurate models.  The Levene test p-value was 0.3554, denoting 

equal variance (see Appendix B, Figure 37).  We conducted a Tukey-Kramer HSD 

comparison of means to determine if the means were significantly different from each 

other and the status quo.  The results of this analysis are displayed in Figure 22; 

examining the connecting letters report from top to bottom, eight models were 

significantly different from the CPR PD (status quo).  These models are outlined with a 

blue box at the bottom of Figure 22.  When evaluating the contracts with IDE data we can 

conclude that these models are more accurate than the status quo and the difference is not 

likely to be random.  One model [IMS PD/ SPI(t) (T.S.)* BEI] identified as significantly 

from the all contracts data set also appears here.  
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Table 20:  MAPE – IDE Data Set (includes 7 of 10 contracts) 

Forecasting Model MAPE 

IDE/ [SPI (T.S.)] 21.27% 

IDE/ [SPI(t)]             21.35% 

IDE/ [SPI(t) (T.S.)] 21.40% 

IDE/ [SPI]         21.50% 

IDE/ [SPI(t) (T.S.)*BEI] 21.87% 

IDE/ [SPI(t) (T.S.)*BEI (T.S.)] 21.89% 

IDE 22.21% 

IMS PD/ [SPI(t) (T.S.)*BEI] 22.95% 

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 22.98% 

IMS PD/ [SPI(t) (T.S.)] 24.23% 

IDE/ [SPI(T.S.)*CPI] 24.50% 

IDE/ [SPI*CPI] 24.51% 

IDE/ [SPI(T.S.)*CPI(T.S.)] 24.53% 

IMS PD/ [SPI(t)]  24.60% 

IMS PD/ [SPI*CPI*BEI(T.S.)] 25.01% 

IMS PD/ [SPI*CPI*BEI] 25.06% 

IMS PD/ [SPI(T.S.)] 25.21% 

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 25.30% 

IDE/ [SPI*CPI*BEI(T.S.)] 25.34% 

IDE/ [SPI*CPI*BEI] 25.36% 

IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 25.41% 

IMS PD/ [SPI(t)*CPI*BEI] 25.43% 

IMS PD/ [SPI] 25.52% 

IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 25.57% 

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 25.62% 

IMS PD/ [SPI(T.S.)*CPI(T.S.)] 25.62% 

IMS PD/ [SPI(t)*CPI] 25.72% 

IDE/ [SPI(t)*CPI] 25.78% 

IMS PD/ [SPI(t)*CPI(T.S.)] 25.79% 

IMS PD/ [SPI*CPI] 25.89% 

IMS PD/ [SPI(T.S.)*CPI] 25.89% 

IMS PD/ [SPI(t)(T.S.)*CPI] 25.89% 

IDE/ [SPI(t)(T.S.)*CPI] 25.92% 

IMS PD 25.94% 

Kalman Filter 25.95% 

IDE/ [SPI(t)*CPI(T.S.)] 25.95% 

IDE/ [SPI(t)(T.S.)*CPI(T.S.)] 26.16% 

CPR PD (status quo) 26.47% 

IDE/ [SPI(t)*CPI*BEI(T.S.)] 26.75% 

IDE/ [SPI(t)*CPI*BEI] 26.78% 

IDE/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)] 27.19% 

IDE/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 27.21% 

Regression 38.36% 
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Figure 22:  Tukey-Kramer HSD - IDE Data Set (7 out of 10 contracts) 

Non OTB Group (GPS OCX and WGS) 

Table 21 lists the MAPE for each model for contracts without an OTB (GPS OCX 

and WGS).  This does not include IDE models.  OTB and non-OTB contracts were not 

compared for the IDE analysis because of the limited dataset (2 non-OTBs and 5 OTBs).  

The most accurate model is an improvement of 2.17% over the status quo (25.50% vs. 

23.33%).  The range is relatively narrow, from 23.33% to 27.79%.  The two models from 

the all contracts analysis are also the most accurate here: IMS PD/ [SPI(t) (T.S.) *BEI 

(T.S.)] and IMS PD/ [SPI(t) (T.S.)* BEI].  Analyzing all of the models at once resulted in 

unequal variances.  We truncated the analysis to include the CPR PD and the most 

accurate model.  The Levene test p-value was 0.1302, denoting equal variance (see 

Appendix B, Figure 38).  Next, we conducted a Tukey-Kramer HSD comparison of 

means.  According to the connecting letters report (Figure 23) the model was not 
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significantly different from the status quo.  Therefore we cannot conclude that any of 

these models are better than the status quo when forecasting the duration of non-OTB 

contracts (alpha = 0.05).  One model [IMS PD/ SPI(t) (T.S.)* BEI] becomes statistically 

different than the status quo if the alpha level is relaxed (alpha = 0.15) (Figure 24).   

 

Table 21:  MAPE - Non OTB Group (4 Contracts & 175 Observations) 

Forecasting Model MAPE 

IMS PD/ [SPI(t) (T.S.)*BEI] 23.33% 

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.57% 

IMS PD/ [SPI(t) (T.S.)] 23.78% 

IMS PD 24.35% 

IMS PD/ [SPI(T.S.)] 24.41% 

IMS PD/ [SPI(t)(T.S.)*CPI] 24.55% 

IMS PD/ [SPI(t)]      24.77% 

IMS PD/ [SPI(t)*CPI]  24.79% 

IMS PD/ [SPI(t)*CPI*BEI (T.S.)] 24.84% 

IMS PD/ [SPI(t)*CPI*BEI] 24.87% 

IMS PD/ [SPI(t)*CPI (T.S.)] 24.93% 

IMS PD/ [SPI] 25.18% 

IMS PD/ [SPI(t) (T.S.)*CPI (T.S.)] 25.31% 

IMS PD/ [SPI(t) T.S.*BEI (T.S.)*CPI (T.S.)] 25.31% 

IMS PD/ [SPI(t) (T.S.)*BEI*CPI (T.S.)] 25.34% 

Kalman Filter 25.38% 

IMS PD/ [SPI*CPI*BEI (T.S.)] 25.43% 

IMS PD/ [SPI*CPI*BEI] 25.46% 

IMS PD/ [SPI (T.S.)*CPI (T.S.)] 25.46% 

CPR PD (status quo) 25.50% 

IMS PD/ [SPI*CPI] 25.95% 

IMS PD/ [SPI(T.S.)*CPI] 26.19% 

Regression 27.79% 

 



82 

 
Figure 23:  Tukey-Kramer HSD - No OTB 

 
Figure 24:  Tukey-Kramer HSD - No OTB (alpha = 0.15) 

The difference is not as pronounced as the previous analysis and is more 

susceptible to type I error (false positive).  Why are the models less accurate for non-

OTB contracts?  Possible explanations include: the schedule performance is more stable 

for short and non-OTB contracts.  The three shortest duration contracts were in this 

analysis (25.0, 28.3, and 47.4 months).  Another possible explanation is lower cost and 

schedule growth for the non-OTB contracts.  The four non-OTB contracts had an average 

schedule growth of 60.8% (median = 59.2%) compared to 135.8% (median = 94.8%) for 

the six OTB contracts.  Additionally, the four non-OTB contracts had an average cost 
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growth of 47.9% (median = 19.4%) compared to 170.5% (median = 147.8%) for the six 

OTB contracts.  Low schedule and cost growth may indicate better initial schedule 

estimates and impact from management decisions.  Therefore, there should be less room 

for accuracy improvement over the status quo estimate.  Short duration contracts may be 

less uncertain than lengthier contracts because there is less time for changes and other 

unforeseen issues.  Contract length, OTBs, schedule growth, and cost growth are further 

explored in the subsequent sections. 

 

OTB Group (6 Contracts & 631 Observations) 

Table 22 lists the MAPE for each model for contracts with at least one OTB.  This 

does not include IDE models.  In this grouping the most accurate model is an 

improvement of 3.16% over the status quo (26.32% vs. 23.16%).  With the exception of 

regression (38.83%) the models lie within a narrow range (23.16% to 26.32%).  

Analyzing all of the models at once resulted in unequal variances.  We truncated the 

analysis to include the CPR PD and the most accurate models.  The Levene test p-value 

was 0.1305, denoting equal variance (see Appendix B, Figure 39).  Next, we conducted a 

Tukey-Kramer HSD comparison of means.  The connecting letters report (Figure 25) 

shows two models that are significantly different than the status quo: IMS PD/ [SPI(t) 

(T.S.)*BEI] and IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)].  Both of the models are more 

accurate than the status quo and have been among the most accurate models for each type 

of analysis.   
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Table 22:  MAPE – OTB Group (6 Contracts & 631 Observations) 

Forecasting Model MAPE 

IMS PD/ [SPI(t) (T.S.)* BEI (T.S.)] 23.16% 

IMS PD/ [SPI(t) (T.S.)* BEI] 23.18% 

IMS PD/ [SPI* CPI* BEI(T.S.)] 24.24% 

IMS PD/ [SPI* CPI* BEI] 24.26% 

IMS PD/ [SPI(t) (T.S.)] 24.44% 

IMS PD/ [SPI(t)]         24.53% 

IMS PD/ [SPI(t)* CPI* BEI(T.S.)] 24.61% 

IMS PD/ [SPI(t) (T.S.)* CPI(T.S.)] 24.70% 

IMS PD/ [SPI(t)* CPI* BEI] 24.71% 

IMS PD/ [SPI(t) (T.S.) *BEI (T.S.)* CPI(T.S.)] 24.74% 

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 24.77% 

IMS PD/ [SPI (T.S.)*CPI (T.S.)] 24.94% 

IMS PD/ [SPI (T.S.)* CPI] 25.00% 

IMS PD/ [SPI* CPI]   25.06% 

IMS PD/ [SPI(t)* CPI ]    25.15% 

IMS PD/ [SPI(t)* CPI(T.S.)] 25.19% 

IMS PD/ [SPI (T.S.)] 25.30% 

IMS PD/ [SPI(t) (T.S.)* CPI] 25.38% 

IMS PD/ [SPI]          25.39% 

Kalman Filter 26.10% 

IMS PD 26.16% 

CPR PD (status quo) 26.32% 

Regression 38.83% 

 

 

Why is the accuracy improvement significant for contracts with OTBs, but not 

non-OTB contracts?  Contracts that undergo OTBs may have done so because the 

original estimates were overly optimistic.  The hypothesis is contracts with OTBs have 

more potential for improved accuracy (over the status quo estimate).  This relationship 

will be examined further in the subsequent sections. 
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Figure 25:  Tukey-Kramer HSD (OTB) 

 

Individual Contracts 

We have examined the forecasting models with a variety of groupings.  A handful 

of models have consistently appeared as the most accurate.  Is there a single model that 

dominates on the individual contract level?  Table 23 lists the most accurate model for 

each of the ten contracts along with the status quo model to illustrate the accuracy 

improvement.  Detailed accuracy results for each contract are listed in Appendix C, 

beginning with Table 62 and Figure 43.  Not surprisingly, no single model is the most 

accurate for each contract.  In fact, the same model was not the most accurate for any two 

contracts.  Of course similarities exist between the models and their parameters.  Of note, 

models with SPI(t) are among the most accurate in 7 of 10 contracts.  Models with BEI 

are among the most accurate in 5 of 10 contracts.  Time series performance factors appear 

in 6 of the 10 most accurate models.  IDE based models are the most accurate in 6 out of 

7 contracts where data were available.  These results reinforce the previous analysis.  

SPI(t) is a consistent performance factor for duration forecasting.  BEI is not as strong, 
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but has displayed validity in this research.  Time series analysis can further enhance the 

index based models.  Finally, the IDE approach has routinely been the most accurate for 

contracts with the available IMS data.  

Table 23:  Most Accurate Model by Contract 

Program Contract 

Final 

Duration Model 

CPR PD 

(Status 

Quo) 

Best 

Model Delta 

GPS OCX FA8807-08-C-

0001 

25.0 [IMS PD/ SPI(t) (T.S).* 

BEI (T.S.)* CPI(T.S.)] 

20.41% 18.37% 2.04% 

GPS OCX  FA8807-08-C-

0003 

28.3 [IMS PD/ SPI(t)*CPI* 

BEI] 

25.71% 21.98% 3.73% 

WGS FA8808-06-C-

0001 

47.4 [IDE/ SPI(t) (T.S.)*CPI] 24.77% 18.69% 6.08% 

MUOS N00039-04-C-

2009 

55.9 [IDE/ SPI (T.S.)] 19.23% 7.87% 11.36% 

NAVSTAR 

GPS 

FA8807-06-C-

0003  

86.8 [IDE/ SPI(t) (T.S.)*BEI 

(T.S.)] 

32.89% 25.67% 7.23% 

NAVSTAR 

GPS 

FA8807-06-C-

0001  

87.1 [IDE/ SPI(t) (T.S.)*BEI] 33.05% 24.45% 8.60% 

NAVSTAR 

GPS  

FA8807-06-C-

0004 

88.1 [IDE/ SPI ]              23.76% 10.33% 13.43% 

WGS FA8808-10-C-

0001 

96.3 IDE 29.33% 19.53% 9.79% 

AEHF F04701-02-C-

0002  

165.0 [IMS PD/ SPI(t)*CPI] 25.66% 23.09% 2.57% 

SBIRS 

HIGH 

F04701-95-C-

0017  

241.8 [IMS PD/ SPI(t) (T.S.)* 

BEI (T.S.)] 

24.63% 21.88% 2.76% 

 

Short Duration Contracts 

Because of differences in the length of contracts it is important to analyze them 

separately to determine if any differences in accuracy exists.  Reexamining Table 23 

shows the short duration contracts (GPS OCX) and the long duration contracts (AEHF & 

SBIRS) have the lowest accuracy improvement (2.04%, 2.57%, 2.76%, & 3.73%).  We 

conducted further analysis by grouping the contracts into short (GPS OCX), medium 

(NAVSTAR GPS, MUOS, & WGS), and long duration contracts (AEHF & SBIRS). 
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Table 24 shows the most accurate model is a 2.81% (23.24% vs. 20.43%) improvement 

over the status quo for the short duration group.  

Table 24:  MAPE - Short Duration Contracts (GPS OCX) 

Forecasting Model MAPE 

IMS PD/SPI(t) T.S.*BEI(T.S.)*CPI(T.S.) 20.43% 

IMS PD/SPI(t)* BEI(T.S.)* CPI 20.56% 

IMS PD/SPI(t) (T.S.)*BEI*CPI(T.S.) 20.56% 

IMS PD/SPI*CPI*BEI(T.S.) 20.59% 

IMS PD/SPI(t)*CPI*BEI 20.71% 

IMS PD/SPI*CPI*BEI 20.73% 

IMS PD/SPI(t) (T.S.)*BEI (T.S.) 20.75% 

IMS PD/SPI(t) (T.S.)*BEI 20.88% 

IMS PD/SPI(t)(T.S.)*CPI 22.27% 

IMS PD/SPI(t)(T.S.)*CPI(T.S.) 22.36% 

IMS PD/SPI(t)*CPI     22.54% 

IMS PD/SPI*CPI     22.56% 

IMS PD/SPI(T.S.)*CPI 22.60% 

IMS PD/SPI(t)*CPI(T.S.) 22.61% 

IMS PD/SPI(T.S.)*CPI(T.S.) 22.64% 

IMS PD/SPI(t) (T.S.) 22.66% 

IMS PD/SPI(t)                22.91% 

IMS PD/SPI               22.94% 

IMS PD/ SPI(T.S.) 22.95% 

CPR PD (status quo) 23.24% 

IMS PD 23.71% 

Kalman Filter 24.64% 

Regression 25.04% 

 

The range of 20.43% to 25.04% is the narrowest range of the entire analysis.  

Analyzing all of the models at once resulted in unequal variances.  We truncated the 

analysis to include the CPR PD and the most accurate model.  The Levene test p-value 

was 0.3337, denoting equal variance (see Appendix B, Figure 40).  Next, we conducted a 

Tukey-Kramer HSD comparison of means.  The connecting letters report (Figure 26) 

shows the most accurate model is not significantly different than the status quo.  Relaxing 
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the alpha does not separate the model from the status quo until an alpha of 0.27 (Figure 

27).  At this alpha level there is a much larger chance of type I error (false positive). 

 
Figure 26:  Tukey-Kramer HSD - Short Duration 

 
Figure 27:  Tukey-Kramer HSD - Short Duration (alpha = 0.27) 

These results support the non-OTB group results.  The two contracts analyzed do 

not have OTBs.  What factors are affecting the accuracy improvement?  Is it the length of 

the contract, OTBs, or a different parameter?  We used regression analysis in an attempt 

to provide a quantitative answer to this question.  The regression results are reported after 

the group analysis. 
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Medium Duration Contracts 

Table 25 displays the MAPE results for medium duration contracts (six contracts). 

The most accurate model is an improvement of 7.8% over the status quo (27.43% vs. 

19.63%).  All of the forecasting models were better than the status quo except for 

regression.  The following seven IDE models that are significantly different than the 

status quo: 

 IDE 

 IDE/ [SPI] 

 IDE/ [SPI(t) (T.S.)] 

 IDE/ [SPI(t) (T.S.) * BEI (T.S.)] 

 IDE/ [SPI(t)] 

 IDE/ [SPI(t) (T.S.) * BEI] 

 IDE/ [SPI (T.S.)] 

Analyzing all of the models at once resulted in unequal variances.  We truncated 

the analysis to include the CPR PD and the most accurate models.  The Levene test p-

value was 0.9811, denoting equal variance (Appendix B, Figure 41).  Next, we conducted 

a Tukey-Kramer HSD comparison of means.  The seven models highlighted by the blue 

box in the connecting letters report (Figure 28) are significantly different from the status 

quo.   

Referring back to Table 23, each of the six contracts in this analysis had an IDE 

based model as the most accurate model.  When data is available, the IDE based methods 

appears to be the most accurate.   
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Table 25:  MAPE - Medium Duration Contracts (MUOS, NAVSTAR GPS, & WGS) 

Model MAPE 

IDE/ SPI(T.S.) 19.63% 

IDE/ [SPI(t) (T.S.)*BEI] 19.68% 

IDE/ SPI(t)                19.71% 

IDE/ [SPI(t) (T.S.)*BEI (T.S.)] 19.77% 

IDE/ [SPI(t) (T.S.)] 19.79% 

IDE/ SPI               19.99% 

IDE 20.95% 

IMS PD/ [SPI(t) (T.S.)*BEI] 23.42% 

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.55% 

IDE/ [SPI(T.S.)*CPI] 24.10% 

IDE/ [SPI*CPI]   24.10% 

IMS PD/ [SPI(t) (T.S.)] 24.13% 

IDE/ [SPI(T.S.)*CPI(T.S.)] 24.15% 

IDE/ [SPI*CPI*BEI] 24.46% 

IDE/ [SPI*CPI*BEI(T.S.)] 24.48% 

IMS PD/ SPI(t)                24.68% 

IMS PD/ [SPI(T.S.)] 25.63% 

IDE/ [SPI(t)*CPI]   26.00% 

IMS PD/ SPI               26.10% 

IMS PD/ [SPI*CPI*BEI] 26.21% 

IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 26.21% 

IMS PD/ [SPI*CPI*BEI(T.S.)] 26.22% 

IDE/ [SPI(t)(T.S.)*CPI] 26.22% 

IDE/ [SPI(t)*CPI(T.S.)] 26.26% 

IMS PD 26.52% 

IMS PD/ [SPI(T.S.)*CPI(T.S.)] 26.54% 

IDE/ [SPI(t)*CPI*BEI] 26.57% 

IDE/ [SPI(t)*CPI*BEI(T.S.)] 26.59% 

IDE/ [SPI(t)(T.S.)*CPI(T.S.)] 26.59% 

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 26.60% 

IMS PD/ [SPI(t)*CPI] 26.66% 

Kalman Filter 26.67% 

IMS PD/ [SPI(t)*CPI*BEI] 26.72% 

IMS PD/ [SPI(t)*CPI(T.S.)] 26.78% 

IMS PD/ [SPI(t)(T.S.)*CPI] 26.93% 

IMS PD/ [SPI*CPI]  26.93% 

IMS PD/ [SPI(T.S.)*CPI] 26.94% 

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 27.01% 

IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 27.01% 

IDE/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 27.22% 

IDE/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)] 27.25% 

CPR PD (status quo) 27.43% 

Regression 39.81% 
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Figure 28:  Tukey-Kramer HSD - Medium Duration 

Why are the results different for short and medium duration contracts?  The 

medium duration models are more likely to have an OTB than the shorter contracts (4 of 

6 compared to zero).  Contracts with OTBs appear to have less accurate status quo 

estimates compared to non OTB contracts.  The effect of OTBs are explored further in 

the regression analysis section.  Regardless of the reason, there is clear evidence that any 

of the seven IDE based models are the most accurate models for medium duration 

contracts (47.4 to 96.3 months).  

Long Duration Contracts 

Table 26 displays the accuracy results for long duration contracts (AEHF and 

SBIRS).  The results were less substantial for the longer contracts with only a 2.13% 

(25.05% vs. 22.92%) improvement over the status quo. 
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Table 26:  MAPE - Long Duration Contracts (AEHF & SBIRS) 

Metric MAPE 

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 22.92% 

IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 22.94% 

IMS PD/ [SPI*CPI*BEI(T.S.)] 22.98% 

IMS PD/ [SPI(t)*CPI*BEI] 23.01% 

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 23.04% 

IMS PD/ [SPI*CPI*BEI] 23.08% 

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 23.18% 

IMS PD/ [SPI(t) (T.S.)*BEI] 23.28% 

IMS PD/ [SPI(t)*CPI(T.S.)] 23.58% 

IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 23.59% 

IMS PD/ [SPI(t)*CPI] 23.59% 

IMS PD/ [SPI(t)(T.S.)*CPI] 23.59% 

IMS PD/ [SPI(T.S.)*CPI] 23.68% 

IMS PD/ [SPI(T.S.)*CPI(T.S.)] 23.68% 

IMS PD/ [SPI*CPI]  23.69% 

IMS PD/ SPI(t)                24.69% 

IMS PD/ [SPI(t) (T.S.)] 24.70% 

IMS PD/ SPI(T.S.) 24.78% 

IMS PD/ SPI               24.78% 

CPR PD (status quo) 25.05% 

IMS PD 25.17% 

Kalman Filter 25.27% 

Regression 34.03% 

 

Analyzing all of the models at once resulted in unequal variances.  We truncated 

the analysis to include the CPR PD and the most accurate model.  The Levene test p-

value was 0.0714, denoting equal variance (Appendix B, Figure 42).  Next, we conducted 

a Tukey-Kramer HSD comparison of means.  The connecting letters report (Figure 29) 

shows the most accurate model is not significantly different than the status quo.  After 

relaxing the alpha (0.10) the most accurate model (IMS PD / [SPI(t)*CPI *BEI (T.S.)) is 

significantly different than the status quo (Figure 30). 
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Figure 29:  Tukey-Kramer HSD - Long Duration 

 
Figure 30:  Tukey-Kramer HSD - Long Duration (Alpha = 0.10) 

Once again, a larger alpha means there is a greater chance of type I error.  

Therefore, the difference between the most accurate model and the status quo is not as 

pronounced as the prior analysis with a smaller alpha.  Why is this the case?  The 

potential reasons are the most confounding of this analysis.  For SBIRS, BEI data were 

not available until 89 months into the contract (37% complete).  BEI based models have 

been among the best performers and each of the six models most accurate models here 

contain a BEI parameter.  SBIRS was the only contract out of seven (with IDE data) that 

did not have an IDE based model as the most accurate.  One reason may have been data 

availability; IDE data was not available until 141 months (58% complete).  For AEHF, 
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IDE was not available at all. Furthermore, the first EVM data were not reported until 11 

months into the contract.  Another possibility, the schedule and cost performance factors 

are not the drivers of schedule growth.  Perhaps management decisions are driving the 

cost and schedule growth of the longer contracts.  Therefore enhancing the IMS PD with 

performance factors will not drastically improve the estimate accuracy.  Another factor to 

consider, these program are not 100% complete.  The forecast accuracy results will be 

different if the actual completion date is different than the current planned completion 

dates for AEHF and SBIRS: 06/30/2015 and 12/31/2016. 

Sensitivity Analysis: Entire Data Set 

In the next section what-if analysis is conducted because there is no single 

dominant forecasting model.  The scenario is what if we use the most accurate overall 

model then examine how well it fares compared to the status quo for each contract.  

Table 27 displays the what-if analysis for the most accurate IMS based model [(IMS PD / 

(SPI(t) (T.S.) * BEI)] applied to all contracts (refer to Table 19 for the most accurate IMS 

models). 

Nine out of the ten contracts show an improvement in accuracy over the status 

quo.  The WGS contract (FA8808-10-C-0001) is the only contract in the entire analysis 

where an IMS index based does not improve upon the status quo.  This contract had high 

CPI, SPI, and SPI(t) early in the contract (see Table 28).  This resulted in the models 

predicting the contract would be completed faster than the planned duration.  This large 

error could not be overcome by improved accuracy in the later periods. 
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Table 27:  Comparison of Status Quo vs. Most Accurate IMS Model 

Non-OTB Contracts 

Program Contract 

CPR PD 

(status quo) 

[IMS PD / 

SPI(t) (T.S.) 

*BEI] Delta 

Signif. 

difference 

GPS OCX  FA8807-08-C-0001 20.41% 18.87% 1.54% No 

GPS OCX  FA8807-08-C-0003 25.71% 22.65% 3.06% No 

WGS FA8808-06-C-0001 24.77% 22.86% 1.91% No 

WGS FA8808-10-C-0001 29.33% 30.90% -1.57% No 

OTB Contracts 

AEHF  F04701-02-C-0002  25.66% 25.11% 0.55% No 

MUOS N00039-04-C-2009 19.23% 14.22% 5.01% Yes 

NAVSTAR GPS FA8807-06-C-0001  33.05% 30.52% 2.53% No 

NAVSTAR GPS FA8807-06-C-0003  32.89% 29.21% 3.69% No 

NAVSTAR GPS FA8807-06-C-0004 23.76% 14.92% 8.84% Yes 

SBIRS F04701-95-C-0017  24.63% 22.03% 2.60% No 

 

Table 28:  WGS (FA8808-10-C-0001) – Index Values 

Month 

Count 

CPI CPI 

(T.S.) 

SPI SPI 

(T.S.) 

SPI(t) SPI(t) 

(T.S.) 

1 1.215 1.215 1.166 1.166 1.204 1.204 

2 1.231 1.223 1.328 1.247 1.417 1.311 

3 1.231 1.226 1.475 1.629 1.289 1.303 

4 1.195 1.218 1.351 1.330 1.266 1.324 

5 1.165 1.170 1.302 1.325 1.217 1.279 

6 1.124 1.108 1.256 1.347 1.249 1.274 

7 1.112 1.121 1.307 1.393 1.234 1.268 

8 1.095 1.113 1.284 1.343 1.197 1.259 

9 1.081 1.083 1.255 1.350 1.188 1.251 

10 1.081 1.097 1.207 1.264 1.149 1.241 

11 1.077 1.094 1.208 1.262 1.149 1.129 

12 1.059 1.051 1.182 1.225 1.147 1.100 

 

Because of the similarities in accuracy the IMS model was only significantly 

different than the status quo in two out of ten contracts.  Despite less than overwhelming 
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results, the best IMS based model [(IMS PD / (SPI(t) (T.S.) * BEI)] is no worse in eight 

of ten contracts and more accurate in two of ten contracts. 

Sensitivity Analysis: IDE Data Set 

Table 29 displays another what-if scenario.  This time, we choose to use one of 

the most accurate overall models [IDE/ SPI(t)] for contracts with IDE data.  The result is 

an improvement in all seven contracts.   

Table 29:  Comparison of Status Quo vs. Most Accurate Model with IDE Data 

Program Contract 

CPR PD 

(status quo) 

IDE/ 

SPI(t) Delta 

Signif. 

Diff. 

Non-OTB Contracts 

WGS FA8808-06-C-0001 24.77% 20.05% 4.72% Yes 

WGS  FA8808-10-C-0001 29.33% 21.65% 7.68% Yes 

OTB Contracts 

MUOS N00039-04-C-2009 19.23% 8.29% 10.94% Yes 

NAVSTAR GPS  FA8807-06-C-0001  33.05% 25.98% 7.07% Yes 

NAVSTAR GPS  FA8807-06-C-0003  32.89% 26.71% 6.18% No 

NAVSTAR GPS FA8807-06-C-0004 23.76% 13.25% 10.51% Yes 

SBIRS F04701-95-C-0017  24.63% 24.49% 0.14% No 

 

A very small improvement was achieved in SBIRS (0.14%).  However, a more 

substantial improvement (4.72% to 10.94%) was achieved for the other contracts.  Five of 

the seven contracts have improved accuracy and the model is significantly different than 

the status quo.  Obviously, SBIRS was not significantly different (0.14% difference).  

The primary reason was previously discussed (IDE data not available until 58% 

complete).  At first glance, NAVSTAR GPS (FA8807-06-C-0003) was expected to be 

significantly different (6.18%).  Upon closer inspection, IDE data were not available until 

18 months into the contract (26% complete).  Another IDE data lapse occurred from 
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month 52 to 71.  Thus, the status quo and IDE / SPI(t) are more similar for this contract 

than the accuracy results would suggest. 

Regression Analysis 

The results of the preceding analysis exhibited differences between the accuracy 

of the CPR PD (status quo), IMS models, and IDE models.  Why do these differences 

occur?  How does the length of the contract, OTBs, budget size, cost growth, and 

schedule growth affect duration estimate accuracy?  We used regression analysis in an 

attempt to provide quantitative answers to these questions.  First, we divided the dataset 

into the following dependent variables and data sets: 

 CPR PD Accuracy (All Contracts) 

 Most Accurate Model for Each Contract (All Contracts) 

 Most Accurate Model for the Seven Contract with IDE Data (7 of 10 contracts) 

 IMS Delta Compared to CPR PD (All Contracts) 

 IDE Delta Compared to CPR PD (7 of 10 contracts) 

 IDE Delta Compared to IMS (7 of 10 contracts) 

Table 30 lists the data set for this analysis.  Table 31 through Table 36 summarize the 

results of the regression analysis.  Each of the models met the following diagnostics:  

 Studentized residuals check for outliers (no observations greater than 3 standard 

deviations) 

 Cook’s D influence (less than 0.5) 

 Shapiro-Wilk test for Normality of Residuals (p-value greater than 0.05) 

 Breusch-Pagan test for heteroscedasticity (p-value greater than 0.05) 
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The supporting documentation for the regression analysis and diagnostics is located in 

Appendix D, beginning with Figure 53. 

Table 30:  Regression Analysis Data Set 

Program Contract 

Initial BAC 

(BY97$) 

Final BAC 

(BY97$) OTBs 

CPR 

PD 

(%) 

IMS 

(%) 

IDE 

(%) 

AEHF F04701-02-C-0002  2395.9M 5481.6M 3 25.7 23.1 N/A 

GPS OCX FA8807-08-C-0001 119.0M 142.5M 0 20.4 18.4 N/A 

GPS OCX FA8807-08-C-0003 118.6M 141.0M 0 25.7 22.0 N/A 

MUOS N00039-04-C-2009 70.3M 77.1M 3 19.2 14.0 7.9 

Navstar GPS FA8807-06-C-0001  20.8M 94.0M 1 33.1 25.1 24.5 

Navstar GPS FA8807-06-C-0003  29.8M 79.5M 4 32.9 26.1 25.7 

Navstar GPS FA8807-06-C-0004 47.8M 86.9M 1 23.8 14.9 10.3 

SBIRS F04701-95-C-0017  1663.6M 6383.6M 4 24.6 21.9 24.4 

WGS FA8808-10-C-0001 115.2M 120.6M 0 29.3 29.5 19.5 

WGS FA8808-06-C-0001 295.8M 734.3M 0 24.8 20.3 18.7 

 

Regression Analysis:  CPR PD (status quo) Accuracy 

Table 31 shows the regression results for the accuracy of the CPR PD (status 

quo). The accuracy of the status quo estimate was correlated with the reciprocal of 

schedule growth (1/schedule growth).  This transformation is non-linear, as schedule 

growth increases the CPR PD accuracy decreases at a diminishing rate (Figure 31).  To 

reiterate a discussion from chapter one, the largest sources of schedule growth are 

estimating errors or decisions affecting the schedule.  For these ten contracts, schedule 

growth may occur if the initial estimates are overly optimistic and/or decisions are made 

that affect the schedule.  In theory, greater schedule growth (regardless of the reason) 

leads to less schedule data fidelity resulting in less accurate status quo schedule estimates. 
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Table 31:  CPR PD (status quo) Accuracy 

Term(s) Adj R
2
 

Model 

p-value 

t 

ratio 

Std 

Beta 

Cook’s 

D 

(< 0.5) 

Shapiro 

Wilk p-

value 

Breusch- 

Pagan p-

value MAPE 

Median 

APE 

1/Sched 

Growth 
0.5835 0.0061 -3.7 -0.79 

Yes 

(0.25) 
0.4501 0.7794 8.3% 7.9% 

 

 
Figure 31:  CPR PD 

Regression Analysis:  IMS and IDE Accuracy 

Table 32 and Table 33 list the regression results for the accuracy of the IMS 

models (all contracts) and IDE data set respectively.   

Table 32:  Most Accurate Models - All Contracts 

Term(s) Adj R
2
 

Model 

p-value 

t 

ratio 

Std 

Beta 

Cook’s 

D 

(< 0.5) 

Shapiro 

Wilk p-

value 

Breusch- 

Pagan p-

value MAPE 

Median 

APE 

OTB & 

Sched 

Growth 

DV 

0.5391 0.0094 -3.4 -0.77 
Yes 

(0.29) 
0.9402 0.2756 10.1% 6.9% 

 

The most significant parameter for both data sets was the combination of at least 

one OTB and low schedule growth (less than 62%) into one indicator variable (two 

contracts in this cohort).  The two contracts satisfying both of these conditions 
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experienced increased accuracy gains.  As previously discussed, high schedule growth 

may be the result of estimate errors and decisions.  Consequently, lower schedule growth 

may indicate better initial estimates and management decisions are playing a lesser role.  

Therefore, the data may better explain the contract’s performance leading to more 

accurate schedule estimates (IMS and IDE models).   

Table 33:  Most Accurate Model – IDE Data Set 

Term(s) Adj R
2
 

Model 

p-value 

t 

ratio 

Std 

Beta 

Cook’s 

D 

(< 0.5) 

Shapiro 

Wilk p-

value 

Breusch- 

Pagan p-

value MAPE 

Median 

APE 

OTB & 

Sched 

Growth 

DV 

0.8260 0.0029 -5.4 -0.92 
Yes 

(0.27) 
0.3235 0.3696 13.0% 12.2% 

 

On the other hand, OTBs may confound our results.  Our earlier analysis showed 

contracts with an OTB exhibited improved accuracy compared to contracts without an 

OTB.  That result is also supported by the regression analysis.  Due to the complexity of 

MDAPs and our limited data set it is difficult to tease out simple explanations.  OTB 

research from 2010 concluded contracts undergoing an OTB did not improve cost 

performance (Jack, 2010).  However, cost estimate research from 2009 found increased 

accuracy for estimating the EAC of OTB contracts (Trahan, 2009).  The regression 

results from our analysis suggest some contracts that undergo an OTB may gain fidelity 

in EVM schedule indices and the integrated master schedule (IMS).  This potential 

fidelity may be detected by the IMS PD and IDE models, but not the status quo.  If this is 

true, the models researched here may be more useful for OTB contracts.  Further research 

is necessary to provide a more definitive answer. 
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Regression Analysis:  IMS Accuracy Delta 

Examining the difference between the IMS models and the CPR PD yields 

slightly different results (Table 34).  If a program has just one OTB there is an increase in 

accuracy (IMS over status quo).  This result may support the hypothesis that having one 

OTB is beneficial, but undergoing additional OTBs does not improve schedule 

performance. 

Table 34:  IMS Delta (All Contracts) 

Term(s) Adj R
2
 

Model 

p-value 

t 

ratio 

Std 

Beta 

Cook’s 

D 

(< 0.5) 

Shapiro 

Wilk p-

value 

Breusch- 

Pagan p-

value MAPE 

Median 

APE 

1 OTB DV 0.4956 0.0139 3.1 0.74 
Yes 

(0.26) 
0.9705 0.2974 280% 28.8% 

 

Regression Analysis:  IDE Accuracy Delta 

The summary regression results for the IDE delta data set are listed in Table 35. 

Having schedule growth under 62% and one OTB was significant.  Both variables 

increased the accuracy delta (IDE compared to status quo).  The 1 OTB dummy variable 

by itself was no longer significant and the schedule growth dummy variable had a 

stronger impact than the 1 OTB DV.  The schedule growth dummy variable (under 62%) 

by itself was significant (three contracts).  Once again, high schedule growth may be the 

result of estimating errors and/or decisions.  Therefore, lower schedule growth may 

indicate the opposite, leading to better data fidelity.  A more thorough explanation is 

beyond the scope of this research, further research is necessary to explore this 

relationship.  Whatever the reasons, the accuracy improvement (over status quo) is more 

pronounced for contracts with low schedule growth and one OTB.    
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Table 35:  IDE Delta (7 of 10 contracts) 

Term(s) Adj R
2
 

Model 

p-value 

t 

ratio 

Std 

Beta 

Cook’s 

D 

(< 0.5) 

Shapiro 

Wilk p-

value 

Breusch- 

Pagan p-

value MAPE 

Median 

APE 

● Sched 

Growth DV 

 

● 1 OTB DV 

0.7574 0.0262 3.8 

 

 

2.1 

0.77 

 

 

0.42 

Yes 

(0.46) 

0.6839 0.7690 21.4% 7.5% 

● Sched 

Growth DV 

0.5923 0.0263 3.1 0.81 No 

(0.51) 

0.7642 0.5318 28.8% 14.7% 

 

Regression Analysis:  IDE – IMS Accuracy Delta 

The summary regression results for the IDE - IMS data set are listed in Table 36. 

The difference between IDE and IMS accuracy is the greatest when cost growth is low.  

The larger the natural log of a contract’s cost growth, the lower the increase in accuracy 

(IDE - IMS).  Because it’s a natural log transformed parameter, the effect diminishes as 

the cost growth increases (see Figure 32 for a visual depiction). 

Table 36:  IDE – IMS Accuracy Delta 

Term(s) 

Adj 

R
2
 

Model 

p-

value 

t 

ratio 

Std 

Beta 

Cook’s 

D 

(< 0.5) 

Shapiro 

Wilk p-

value 

Breusch- 

Pagan p-

value MAPE 

Median 

APE 

● Log (Cost 

Growth) 

● 1 OTB DV 

0.923 0.0027 -8.6 
 

 

 2.6 

-1.04 
 

 

 0.31 

Yes 

(0.43) 

0.5255 0.4964 37.0% 20.4% 

● Log (Cost 

Growth) 

0.838 0.0024 -5.7 

 

-0.93 

 

Yes 

(0.45) 

0.8707 0.6268 72.0% 42.0% 

 

Why do larger cost growth contracts exhibit a smaller advantage for the IDE 

models (over the IMS models)?  One possible explanation is cost growth is similar to 

schedule growth; if large cost growth occurs, management decisions may be playing a 

larger role in explaining the schedule than the contract’s data.  Contracts with high cost 

growth may lose schedule data fidelity; therefore the IDE models lose their accuracy 
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advantage over the IMS models.  On the other hand, low cost growth may have the 

opposite effect and better data fidelity.  Once again, contracts with only one OTB have a 

slight accuracy gain.  This result may further support the hypothesis that having one OTB 

is beneficial, but more than one is not.  Additional research is necessary to explore the 

relationship between OTBs, cost growth, and schedule estimate accuracy. 

 
Figure 32:  IDE - IMS Accuracy Delta 

Regression Analysis Summary 

In summary, OTBs, schedule growth, and cost growth were the dominant 

variables explaining the accuracy of the duration estimating models (listed in Table 37).   

Table 37:  Variables Effect on Accuracy 

Response Improves Accuracy Reduces Accuracy 

CPR PD Accuracy Low schedule growth Increasing schedule growth 

reduces accuracy at a 

diminishing rate (non-linear) 

IMS Accuracy Contracts with an OTB and 

schedule growth under 62% 

Contracts with OTB ≠ 1 and 

schedule growth over 62% 

IDE Accuracy Contracts with an OTB and 

schedule growth under 62% 

Contracts with OTB ≠ 1 and 

schedule growth over 62% 

IMS – CPR PD Delta Contracts with OTB =1  Contracts with OTB ≠ 1 

IDE – CPR PD Delta Contracts with schedule growth 

under 62% and OTB =1 

Contracts with schedule growth 

over 62% and OTB ≠ 1 

IDE – IMS Delta Low cost growth Increasing cost growth reduces 

accuracy at a diminishing rate 

(non-linear) 
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Schedule growth is correlated with less accuracy for the CPR PD (status quo).   The 

accuracy of the IMS PD and IDE models is correlated with OTBs and schedule growth.  

The accuracy improvement between the IMS models and the CPR PD is largest for 

contracts with one OTB.  The accuracy improvement between IDE and the CPR is largest 

for contracts with one OTB and low schedule growth (less than 62%).  Finally, the 

accuracy improvement between IDE and IMs is greatest for low cost growth contracts.  It 

should be noted there are substantial limitations with the regression results; the sample 

size is small and there are many possible explanations for the differences in the accuracy 

delta besides the variables examined here.  We cannot conclude that OTBs, schedule 

growth, and cost growth directly impact the duration estimate accuracy, but they are 

correlated for our data set.  The relationships are discussed here to provide a quantitative 

explanation for differences in the accuracy of the duration estimates and may serve as a 

guide to help practitioners decide when to use each model. 

Forecast Model Timeliness 

The next section discusses the timeliness of the IMS forecasts.  Table 38 displays 

the MAPE over time intervals (from 0% to 100%).  Table 38 is highlighted with a heat 

map: dark green is favorable (10th percentile), yellow is average (50th percentile), and 

dark red is unfavorable (90th percentile).  The more dark green present, the more accurate 

the model.  Each of the models exhibit improved accuracy as the contract matures.  Early 

in a contract there is more uncertainty, therefore the early estimates are inherently less 

accurate than later estimates.  The status quo is one of the least accurate methods (red) 
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from 0% to 70%.  The lack of accuracy for status quo estimates may be the result of early 

estimating errors or management decisions as previously discussed.  From 0 to 60% 

complete the IMS/ (SPI(t)*CPI*BEI) based metrics are the most accurate (including time 

series variations).  These models are the most pessimistic because they contain three 

performance factors; most of the contracts experienced less than favorable cost and 

schedule performance (index values less than one).  With the exception of the WGS 

Block 2 Follow On contract, the contracts in this analysis did not have favorable metrics 

in the early periods.  Therefore, the pessimistic duration estimates were higher than the 

status quo.  The accuracy of pessimistic models should be no surprise considering every 

contract experienced schedule growth.  The pessimistic models incorporate performance 

factors and detect schedule growth earlier than the status quo method.  Therefore, using a 

pessimistic forecast model in the early periods (0 to 60%) should improve the accuracy of 

duration estimates.  

From 61% to 70% the most accurate models are: IMS PD/ (SPI(t)*BEI) and IMS 

PD/ (SPI*CPI*BEI) (including time series).  These models are less pessimistic, but still 

incorporate cost and schedule performance into the model.  The difference between the 

most accurate model from 0% to 60% [IMS/ (SPI(t)*CPI*BEI)] and 61% to 70% [IMS 

PD/ (SPI(t)*BEI)] is the removal of the CPI.  The other model [IMS PD/ (SPI*CPI*BEI)] 

replaces SPI(t) with SPI and is therefore a less pessimistic model because SPI begins to 

converge to 1 as the program matures.  As a contract matures the (relatively) less 

pessimistic models become more accurate.  From 71% to 100% complete the following 

models are the most accurate: IMS PD, IMS PD/ SPI(t) (including time series) and IMS 

PD/ SPI (including time series).  At this point in the contract the performance factors (SPI 
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and SPI(t)) were close to one (contract is on schedule); therefore they are not improving 

the accuracy of the basic IMS PD.  On the other end of the spectrum, the most accurate 

models from 0% to 60% are now the worst performers. 

Table 38:  MAPE at Time Intervals (All Contracts) 

 

The next section discusses the timeliness of the IDE and IMS forecasts for the 

seven contracts with IDE data.  Table 39 and Table 40 display the MAPE over time 

intervals (from 0% to 100%).  There is not a single dominant model across the all 

intervals.  This discussion should provide insight into which models perform best at 

certain intervals.   

0 to 10

11 to 

20

21 to 

30

31 to 

40

41 to 

50

51 to 

60

61 to 

70

71 to 

80

81 to 

90

91 to 

100

CPR PD (status quo) 49.2% 48.1% 39.4% 34.2% 29.9% 26.1% 17.7% 10.1% 5.0% 4.4%

IMS PD 49.0% 47.8% 38.7% 34.0% 30.3% 26.5% 17.8% 10.5% 3.4% 1.3%

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 48.2% 46.6% 37.5% 31.2% 25.5% 18.9% 12.3% 9.7% 6.0% 2.2%

IMS PD/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)] 47.9% 45.7% 37.0% 28.7% 22.3% 16.1% 15.2% 17.5% 7.9% 11.3%

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 47.9% 45.6% 37.0% 28.7% 22.3% 16.2% 15.2% 17.5% 8.0% 11.3%

IMS PD/ [SPI(t) (T.S.)*BEI] 48.2% 46.5% 37.5% 31.3% 25.6% 18.9% 12.3% 9.7% 6.1% 2.2%

IMS PD/ [SPI(t) (T.S.)] 48.4% 47.0% 37.8% 33.0% 29.1% 22.9% 14.7% 8.8% 3.2% 2.0%

IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 48.1% 46.1% 36.6% 30.7% 26.7% 19.6% 13.0% 12.2% 5.1% 10.9%

IMS PD/ [SPI(t)(T.S.)*CPI] 48.2% 46.2% 36.4% 30.5% 26.1% 19.7% 16.7% 14.0% 4.9% 10.9%

IMS PD/ [SPI(t)*CPI(T.S.)] 47.6% 46.4% 37.4% 30.6% 26.2% 19.1% 15.5% 14.2% 5.0% 11.3%

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 47.6% 46.2% 36.9% 29.1% 22.7% 15.8% 14.9% 16.9% 7.9% 11.5%

IMS PD/ [SPI(t)*CPI*BEI] 48.0% 45.7% 36.8% 29.0% 22.6% 16.0% 15.0% 17.5% 8.0% 11.6%

IMS PD/ [SPI(t)*CPI] 47.7% 46.5% 37.2% 30.9% 26.3% 18.9% 15.1% 14.2% 4.8% 11.2%

IMS PD/ [SPI(T.S.)*CPI(T.S.)] 48.0% 46.8% 37.1% 30.5% 26.6% 21.0% 13.9% 13.1% 5.0% 10.1%

IMS PD/ [SPI(T.S.)*CPI] 48.1% 46.8% 37.1% 30.8% 26.7% 21.0% 14.1% 13.0% 4.9% 9.9%

IMS PD/ [SPI*CPI*BEI(T.S.)] 47.8% 46.4% 36.8% 29.2% 23.1% 17.2% 12.7% 15.7% 7.8% 10.1%

IMS PD/ [SPI*CPI*BEI] 47.8% 46.3% 36.8% 29.2% 23.1% 17.2% 12.7% 15.7% 7.8% 10.1%

IMS PD/ [SPI*CPI] 48.0% 46.8% 37.1% 31.0% 26.7% 21.0% 13.9% 13.1% 4.7% 9.8%

IMS PD/ SPI              48.1% 47.6% 37.8% 33.3% 29.8% 26.0% 17.4% 10.2% 3.3% 1.2%

IMS PD/ SPI(t)               47.9% 47.3% 37.9% 33.2% 29.4% 23.3% 15.0% 9.0% 3.2% 2.2%

IMS PD/ SPI(T.S.) 48.3% 47.7% 37.7% 33.0% 29.8% 25.9% 17.3% 10.1% 3.4% 1.3%

Kalman 48.9% 48.0% 38.6% 34.1% 30.0% 25.1% 18.7% 10.3% 5.2% 2.7%

Regression 52.4% 54.2% 49.7% 44.0% 41.9% 38.6% 33.2% 21.5% 15.9% 13.2%

Forecasting Model

Percent Complete Interval
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Table 39:  MAPE at Time Intervals (with IDE Data) 

 

From 0% to 60% the status quo is among the least accurate.  The 0% to 10% 

interval MAPEs are close across the board with the IMS PD based metrics having a slight 

edge.  From 11% to 60% completion the following models are the most accurate:  

 IDE/ (SPI(t)*BEI) (including time series) 

 IDE/ (SPI*CPI*BEI) (including time series) 

This result is similar to the prior section’s analysis.  However, these performance factors 

are less pessimistic than the SPI(t)*CPI*BEI.  The IDE by itself is a pessimistic model 

because it modifies the IMS PD by adding the schedule slip.  Applying a moderately 

pessimistic performance factor to the IDE will further improve the forecast accuracy.   

0 to 10

11 to 

20

21 to 

30

31 to 

40

41 to 

50

51 to 

60

61 to 

70

71 to 

80

81 to 

90

91 to 

100

CPR PD (status quo) 51.1% 49.7% 39.7% 35.0% 29.5% 26.3% 17.6% 9.0% 4.7% 5.2%

IMS PD 50.7% 49.2% 38.7% 34.8% 30.1% 26.6% 17.8% 9.3% 2.5% 1.0%

IMS PD/ SPI(T.S.) 49.9% 49.2% 37.8% 33.7% 29.6% 26.1% 17.1% 9.0% 2.5% 1.0%

IMS PD/SPI              49.7% 49.2% 37.9% 34.1% 29.6% 26.0% 17.2% 9.1% 2.4% 0.9%

IMS PD/SPI(t)               49.5% 48.9% 38.1% 34.0% 29.2% 22.6% 14.1% 7.6% 2.4% 2.2%

IMS PD/ [SPI(t) (T.S.)*BEI] 50.0% 48.2% 38.1% 31.6% 24.2% 17.0% 10.7% 8.5% 6.1% 2.3%

IMS PD/ [SPI(t) (T.S.)*BEI (T.S.)] 50.0% 48.2% 38.1% 31.3% 24.3% 17.1% 10.6% 8.1% 6.3% 2.4%

IMS PD/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 49.6% 47.3% 38.5% 30.0% 22.1% 14.5% 13.9% 18.4% 8.5% 13.6%

IMS PD/SPI(t) T.S. 50.0% 48.4% 38.1% 33.8% 28.9% 22.2% 13.7% 7.3% 2.3% 1.9%

IMS PD/ [SPI(t) T.S.*BEI(T.S.)*CPI(T.S.)] 49.6% 47.3% 38.4% 29.7% 22.2% 14.6% 13.8% 17.9% 8.6% 13.7%

IMS PD/ [SPI(t)(T.S.)*CPI(T.S.)] 49.6% 47.5% 37.6% 32.3% 27.8% 18.9% 11.0% 11.2% 4.6% 12.9%

IMS PD/ [SPI(t)(T.S.)*CPI] 49.8% 47.7% 37.4% 32.1% 26.9% 19.1% 15.8% 13.6% 4.3% 13.0%

IMS PD/ [SPI(t)*CPI] 49.3% 48.2% 38.3% 32.6% 27.2% 18.0% 13.8% 13.9% 4.4% 13.3%

IMS PD/ [SPI(t)*CPI(T.S.)] 49.1% 48.1% 38.4% 32.3% 27.1% 18.3% 14.2% 14.0% 4.6% 13.5%

IMS PD/ [SPI(t)*CPI*BEI] 49.7% 47.6% 38.2% 30.3% 22.4% 14.3% 13.7% 18.4% 8.5% 14.0%

IMS PD/ [SPI(t)*CPI*BEI(T.S.)] 49.3% 48.1% 38.2% 30.1% 22.6% 14.2% 13.4% 17.2% 8.6% 14.0%

IMS PD/ [SPI(T.S.)*CPI(T.S.)] 49.5% 48.3% 38.1% 32.0% 27.6% 20.8% 12.2% 12.2% 4.5% 12.0%

IMS PD/ [SPI(T.S.)*CPI] 49.7% 48.4% 38.0% 32.4% 27.6% 20.7% 12.4% 12.2% 4.3% 11.7%

IMS PD/ [SPI*CPI] 49.5% 48.5% 38.0% 32.7% 27.6% 20.8% 12.2% 12.2% 4.1% 11.5%

IMS PD/ [SPI*CPI*BEI] 49.5% 48.3% 38.0% 30.5% 23.0% 15.8% 10.7% 15.8% 8.2% 12.0%

IMS PD/ [SPI*CPI*BEI(T.S.)] 49.5% 48.4% 38.0% 30.3% 23.0% 15.9% 10.6% 15.3% 8.3% 12.1%

Percent Complete Interval

Forecasting Model
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From 61% to 80% complete the following models are the most accurate:  IDE, 

IDE/ SPI(t), and IDE/ SPI.  Again, the results are similar to the prior section’s analysis, 

less pessimistic performance factors become more accurate as the contract matures.  

From 81% to 100% complete the following models are the most accurate: IMS PD, IMS 

PD/ SPI(t),  and IMS PD/ SPI.  Once again, as the program matures to the later stages the 

basic forecast is among the most accurate.  Over the same time interval many of the IDE 

based metrics lose their accuracy advantage because they are overestimating duration. 

Table 40:  MAPE at Time Intervals (with IDE Data) 

 

0 to 10

11 to 

20

21 to 

30

31 to 

40

41 to 

50

51 to 

60

61 to 

70

71 to 

80

81 to 

90

91 to 

100

IDE 50.7% 48.2% 35.0% 25.0% 23.5% 16.0% 8.9% 5.3% 6.5% 2.7%

IDE/SPI(T.S.) 49.9% 48.2% 34.4% 25.1% 23.0% 15.5% 8.9% 5.4% 6.5% 2.7%

IDE/SPI              51.3% 48.4% 33.7% 25.2% 23.0% 15.4% 8.9% 5.4% 6.4% 2.7%

IDE/SPI(t)               50.9% 48.1% 33.9% 25.2% 22.6% 12.9% 10.0% 7.5% 6.3% 4.0%

IDE/ [SPI(t) (T.S.)*BEI (T.S.)] 51.0% 47.8% 34.1% 24.0% 17.5% 10.5% 15.1% 12.4% 10.1% 4.0%

IDE/SPI(t) (T.S.) 51.0% 48.0% 34.1% 25.3% 22.3% 12.7% 9.8% 7.8% 5.9% 3.6%

IDE/ [SPI(t) (T.S.)*BEI] 51.0% 47.4% 34.0% 24.5% 17.2% 10.8% 15.5% 12.7% 9.7% 3.9%

IDE/ [SPI(t) (T.S.)*BEI(T.S.)*CPI(T.S.)] 51.7% 47.6% 34.8% 24.3% 17.3% 16.1% 25.3% 25.7% 15.8% 13.8%

IDE/ [SPI(t) (T.S.)*BEI*CPI(T.S.)] 51.7% 47.2% 34.7% 24.9% 17.0% 16.4% 25.8% 26.0% 15.1% 13.7%

IDE/ [SPI(t)(T.S.)*CPI] 51.6% 47.7% 34.8% 25.2% 21.4% 16.3% 19.0% 20.4% 11.2% 13.5%

IDE/ [SPI(t)(T.S.)*CPI(T.S.)] 51.7% 47.8% 34.8% 25.5% 21.4% 16.8% 19.4% 20.6% 11.1% 13.4%

IDE/ [SPI(t)*CPI] 51.5% 47.9% 34.6% 25.2% 21.6% 16.4% 18.6% 19.9% 11.3% 14.0%

IDE/ [SPI(t)*CPI(T.S.)] 51.6% 48.0% 34.7% 25.4% 21.7% 16.9% 19.0% 20.0% 11.2% 13.9%

IDE/ [SPI(t)*CPI*BEI] 51.5% 47.3% 34.5% 24.1% 17.0% 16.0% 25.0% 25.3% 15.3% 14.3%

IDE/ [SPI(t)*CPI*BEI(T.S.)] 51.5% 47.7% 34.7% 23.6% 17.2% 15.8% 24.5% 25.0% 16.0% 14.4%

IDE/ [SPI(T.S.)*CPI] 50.5% 47.9% 35.2% 25.2% 21.9% 12.6% 11.6% 17.2% 12.4% 12.4%

IDE/ [SPI(T.S.)*CPI(T.S.)] 50.6% 48.0% 35.2% 25.5% 21.9% 13.1% 11.8% 17.3% 12.3% 12.3%

IDE/ [SPI*CPI] 51.9% 48.2% 34.4% 25.2% 21.9% 12.6% 11.6% 17.0% 12.3% 12.4%

IDE/ [SPI*CPI*BEI] 51.9% 47.6% 34.3% 24.1% 17.0% 11.4% 17.6% 22.4% 16.3% 12.7%

IDE/ [SPI*CPI*BEI(T.S.)] 51.9% 48.1% 34.4% 23.6% 17.3% 11.1% 17.2% 22.0% 17.0% 12.8%

Kalman Filter 50.8% 49.6% 38.8% 35.1% 29.9% 24.5% 17.3% 9.0% 4.0% 2.8%

Regression 54.7% 55.3% 54.9% 44.4% 41.4% 40.9% 35.7% 23.9% 18.3% 14.8%

Forecasting Model

Percent Complete Interval
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Validating the Cost Estimating Model 

The final area of analysis applies a duration estimate to the BCWP burn rate 

model in order to assess the cost estimate accuracy.  This section is ancillary to the 

primary research, but is related to the overall research objective.  The genesis of this 

research was to improve the accuracy of the BCWP based cost estimate by improving the 

accuracy of the duration estimate.  Due to time constraints only one of the duration 

models was tested.  This model [IMS PD / (SPI(t)*CPI)] was selected due its simplicity 

and relative ease of calculation.  The five contracts listed in Table 41 were added to the 

original database to validate the cost model.   

Table 41:  Additional Contracts for Cost Model Validation 

Program Contract Type 

FAB-T (Family of Beyond Line-of-Sight Terminals) F19628-02-C-0048 RDT&E 

MUOS (Mobile User Objective System) N00039-04-C-2009 RDT&E 

GPS OCX (Next Generation Control Segment) FA8807-10-C-0001 RDT&E 

MGUE (Military GPS User Equipment) FA8807-12-C-0011 RDT&E 

EELV (Evolved Expendable Launch Vehicle)  FA8811-13-C-0001 Production 

 

FAB-T is a completed contract and met the initial screening parameters, but it was 

reported as 61% complete therefore it was not included in the schedule database.  MUOS 

was not readily available via DCARC, but was obtained from the author of the AFCAA 

study (Keaton, 2014).  The data were obtained too late in the research process to be 

included in the schedule database; however, the data could be included in the cost 

estimate validation.  MGUE and GPS OCX Phase B were eliminated in the original 

schedule data filter because they were not complete or near complete (at least 90%).  

These contracts were included in the cost estimate validation to test the model on less 
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mature contracts (less than 90% complete).  Finally, EELV was selected to test the model 

on a completed production contract.   

Three cost estimating models were analyzed: 

 Reported EAC: [Contractor reported EAC] 

 BCWP1:  [CPR PD and Actual Time] (Keaton, 2014)  

 BCWP2:  [IMS PD / (SPI(t)*CPI) and actual time] 

The Reported EAC is a base case for comparison purposes.  BCWP1 is the model 

from the AFCAA research (Keaton, 2014).  BCWP2 uses the same BCWP burn rate and 

actual BCWP to date as BCWP1.  However, BCWP2 applies a duration model estimate 

from this research.  The cost estimate MAPE is calculated as follows: 

Equation 46:  Final EAC MAPE 

      
                      

        
     

Table 42 shows the summary accuracy statistics.  BCWP2 is more accurate 

overall (MAPE), at the median (Median APE), from 0 to 70% complete, and from 20 to 

70% complete.  The 20 to 70% completion interval is reported here because this was the 

interval from the AFCAA study (Keaton, 2014).  Overall, the BCWP2 model displayed 

an accuracy improvement of 7.1% over the reported EAC and 6.5% over BCWP1.  

Figure 33 shows a visual depiction of the MAPE from the final reported EAC at 10% 

time intervals.  BCWP2 is the most accurate model from contract initiation to 

approximately 80% complete.  BCWP1 experiences an uptick at the 60% mark.  A deeper 

analysis discovered the WGS Block 2 contract was the reason for BCWP1’s uptick.  

BCWP1 uses the CPR PD as its duration estimate.  In WGS Block 2, at roughly the 50% 
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completion point, the CPR PD begins to drastically overestimate the contract’s duration.  

Figure 34 shows the effect of truncating WGS Block 2 at the 50% point.  BCWP 1 

exhibits a better behaved trajectory once WGS block 2 is truncated.  Rather than using a 

potentially inaccurate CPR PD, the risk could be mitigated by simply using the IMS PD 

in the BCWP1 model. 

 

Table 42:  Accuracy Summary for EAC Forecasting Methods 

Metric 

Reported 

EAC BCWP1 BCWP2 

Reported 

EAC 

Delta 

BCWP1 

Delta 

MAPE 25.0% 24.4% 17.9% 7.1% 6.5% 

Median APE 24.2% 21.2% 17.0% 7.2% 4.2% 

MAPE (0 to 70%)  32.9% 28.5% 21.0% 11.9% 7.6% 

MAPE (20 to 70%)  28.6% 24.8% 16.3% 12.3% 8.6% 

 

 

Table 43 shows the EAC accuracy results for individual contracts; BCWP2 is 

more accurate than the reported EAC in 13/15 contracts and more accurate than BCWP1 

in 14/15 contracts.  Logically, when the CPR PD estimate is more accurate we would 

expect the BCWP1 to be more accurate than BCWP2 because BCWP1 uses CPR PD as 

its duration estimate.  An interesting phenomenon occurred in the MUOS-2 and EELV 

contracts.  The CPR PD was the more accurate duration estimate for these two contracts; 

however, BCWP2 was the more accurate cost estimate compared to the reported EAC 

and BCWP2.  Why did this occur?  Time constraints were an obstacle to providing a 

satisfactory explanation therefore further research is needed to investigate the relationship 

between duration accuracy and EAC accuracy with the BCWP model.  
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Table 43:  EAC Forecasting Accuracy – Individual Contracts 

Contract 

Final Duration MAPE Final EAC MAPE 

CPR PD 

IMS PD 

/SPI(t)* CPI 

Reported 

EAC BCWP1 BCWP2 

GPS MUE-1  33.0%  25.0%  35.6%  29.5%  19.9%  

GPS MUE-3  32.8%  28.5%  37.9%  25.2%  22.0%  

GPS MUE-4  22.7%  21.0%  31.6%  21.2%  8.7%  

GPS OCX -1  20.4%  19.9%  13.9%  13.1%  12.4%  

GPS OCX- 3  22.7%  22.0%  15.8%  16.4%  15.0%  

WGS B2FO  29.3%  36.2%  2.7%  25.9%  17.2%  

WGS Block 2  24.8%  20.8%  17.6%  45.2%  17.0%  

MUOS-1  20.3%  34.4%  24.2%  37.1%  28.8%  

AEHF 25.7%  23.1%  31.6%  20.3%  16.9%  

SBIRS 24.7%  24.0%  39.8%  31.0%  31.4%  

FAB-T  8.3%  3.6%  25.9%  18.0%  12.2%  

MUOS-2  8.6%  9.6%  22.5%  19.9%  18.5%  

EELV  5.7%  9.0%  23.7%  16.8%  14.4%  

MGUE 23.0%  15.3%  16.5%  20.6%  14.9%  

GPS OCX B 21.0%  15.1%  35.4%  24.9%  18.6%  

 
 

 
Figure 33:  MAPE for EAC Forecasting Methods vs. % Complete 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Reported 47% 46% 41% 36% 29% 22% 17% 8% 2% 1% 

BCWP1 46% 39% 31% 26% 24% 24% 20% 15% 12% 13% 

BCWP2 46% 33% 24% 19% 15% 12% 11% 10% 10% 8% 
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Figure 34:  MAPE for EAC Forecasting Methods vs. % Complete [Truncated WGS] 
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Figure 35:  Average Cost Estimate Error (in $B FY15) 

 

Summary 

Many of the models reported in this chapter demonstrated improved accuracy 

over the status quo estimating method, particularly the IDE models.  The models were 

accurate for both OTB and non-OTB contracts.  However, short duration contracts 

without OTBs did not display significantly different results than the status quo.  The 

results were significant for long duration contracts, but less pronounced (alpha = 0.10) 

than the medium duration contracts (alpha = 0.05).  Our regression analysis showed 

OTBs, schedule growth, and cost growth affected the accuracy of the models.  In regards 

to timeliness, the improvement is most substantial up to the 80% completion point; the 

accuracy improvement is greater when IDE data is available.  For both duration data sets 
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(IDE and non IDE) the IMS PD is the most accurate model from 80% to 100% 

completion.   

One duration model [IMS PD / (SPI(t)*CPI)] was tested and validated for 

accuracy in the BCWP burn rate model.  The BCWP2 model proved more accurate than 

the reported EAC and BCWP1 model.  The next chapter discusses the policy implications 

from these results, recommendations, and future research avenues. 
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V.  Conclusions and Recommendations 

Investigative Questions Answered 

The overall research objective is to evaluate forecasting methods for space 

contract duration based on the following criteria: accuracy, reliability, and timeliness.  In 

support of the overarching research objective, the following questions were investigated. 

Our first question was, “What are the appropriate methods to estimate a program’s 

duration?”  The methods from the literature include index based, regression, Kalman-

Filter, and IMS analysis (to develop IDEs).  The new contributions of this research are 

the addition of the BEI and time series analysis to the index based approach, the Kalman-

Filter application to DoD programs, and applying the IMS analysis to space programs.  

Our second question was, “How should accuracy be measured and how accurate 

are the various schedule estimating methods (individual contract, overall, and by various 

groupings)?”  This question represented the bulk of the research.  Many accuracy 

measures were researched, but the MAPE was selected for its applicability across sample 

sizes and ease of communicating the results.  In regards to accuracy, no single model was 

dominant across all contracts.  Of note, the Kalman Filter method did not achieve 

significant improvements over the status quo and the regression approach was the worst 

performing model overall.  Therefore these methods, as researched here, should be 

eliminated from consideration.  The IDE based models are the most accurate.  Combining 

IDE with the SPI and SPI(t) based performance factors further enhances the accuracy.  

This analysis shows that the best IDE model is 5.2% more accurate than the status quo 

(Table 20).  If IDE data is not available the best IMS PD model [IMS PD / SPI(t) 
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(T.S.)*BEI] offered a modest, but significant 2.63% improvement (Table 19).  The 

duration estimating models did not demonstrate significantly different accuracy 

(compared to the status quo) for short duration contracts.  Unfortunately, one limitation 

of this analysis was the lack of IDE data for the short duration contracts.  Medium 

duration contracts had the largest improvement at 7.80% (Table 25).  Of note, each of the 

medium duration contracts had IDE data.  The long duration contracts were significantly 

different (alpha = 0.10) than the status quo, but the difference was less pronounced than 

the medium duration contracts.  Finally, regression analysis conducted on the model 

accuracy detected correlation between OTBs, schedule growth, and cost growth.  

Contracts with one OTB, low schedule growth, and/or low cost growth were correlated 

with increased accuracy. 

Our third question was, “At what point in time (if at all) are the new techniques 

more accurate than the status quo?”  In regards to timeliness, the improvement is most 

pronounced up to the 80% completion point and the accuracy improvement is greater 

when IDE data is available.  The most pessimistic forecast models were accurate early on 

(0% to 60%).  As the contracts matured (61 to 80%), moderately pessimistic models were 

more accurate.  For both data sets (IDE and non IDE) the IMS PD is the most accurate 

model from 80% to 100% completion. 

Our fourth and last question was, “Are the forecasts accurate for programs with 

one or more over target baseline (OTB)?”  The forecast models offer improved accuracy 

for programs with OTBs.  In fact, the forecasts for OTB programs improve the accuracy 

(over the status quo) by a larger margin than non OTB programs (3.17% vs. 2.16%).  The 

hypothesis is contracts with OTBs may improve the fidelity of their schedule data 
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compared to non-OTB contracts.  Undergoing one OTB seems to be beneficial.  

However, undergoing multiple OTBs did not improve the duration estimate accuracy. 

The genesis of this research was to gauge the accuracy of the status quo method 

and if possible, improve upon that method.  The next step was to determine when (if at 

all) the accuracy improves over the status quo, and finally, if the models were accurate 

for OTB contracts.  We can definitively conclude that relying on the CPR reported ECD 

(status quo) is not the best course of action.  In fact, simply verifying the dates reported in 

the IMS is a more accurate method (25.77% compared to 26.14%).  Using the IMS PD 

and EVM indices resulted in a 2.93% accuracy improvement.  The potential exists for a 

larger accuracy improvement (5.2%) when IDE data is available.  IMS PD/PF and IDE 

models are more accurate than the status quo up to the 80% completion point, past this 

point the accuracy advantage fades.  Time series analysis improved accuracy, but not by a 

significant amount.  The Kalman Filter method did not improve accuracy over the status 

quo.  Finally, the regression approach was by far the least accurate model.   

A late addition to this research was the validation of the BCWP based cost 

estimate model.  One duration model [IMS PD / (SPI(t)*CPI)] combined with the BCWP 

burn rate model (BCWP2) outperformed the standard BCWP model (BCWP1) on each 

accuracy metric.  BCWP2 outperforms BCWP1 from 0 to 100% complete.  Furthermore, 

BCWP2 outperforms the reported EAC from 0 to 80% completion. 

Recommendations 

This research found multiple methods that improve the accuracy of duration 

estimating for space and development contracts.  The improved duration estimates can be 
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used with the BCWP burn rate cost estimate model to further improve the accuracy of 

cost estimates.  Additionally, program managers can take corrective action sooner 

because the IMS and IDE models exhibit accuracy gains up to the 80% completion point. 

Three IDE methods are recommended if IDE data is available:  IDE, IDE/SPI, 

and IDE/SPI(t).  One disadvantage associated with developing the IDE models is the 

process is not as simple as using the IMS PD and performance factors.  An additional 

obstacle is the IDE methodology is relatively new, therefore it will probably not be an 

accepted best practice for some time.  If IDE data does not exist, the IMS PD/ (SPI(t) * 

BEI) model is recommended because of its simplicity and accuracy.  Because they did 

not offer significant improvement, models with time series based performance factors are 

not recommended unless the user has access to software comparable to JMP® 11.   

Finally, the BCWP2 cost estimate model was validated with fifteen space 

contracts.  This model is recommended because it provided substantial accuracy 

improvement over both the reported EAC and the BCWP1 model.  At a minimum, the 

BCWP2 model should be used as a cross check for other cost estimating methods. 

Recommendations for Future Research 

A variety of future research avenues exist.  The schedule research was conducted 

on space and development contracts.  Expanding the data set to other commodity and 

contract types is a logical first step.  Another logical step is to test the combination of the 

AFCAA study’s cost model (BCWP1) and additional duration models from this research.  

Additional research opportunities are derived from fine-tuning the methodology.  First, 

the prediction intervals from the Kalman Filter and time series analysis could be used to 
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develop optimistic and pessimistic forecasts.  Restricting the time series analysis to a 

shorter time frame, for example using 12 months of data at a time, would give more 

weight to recent performance.  Additionally, the OTBs could be incorporated into the 

time series analysis instead of resetting the analysis after each OTB.  In regards to 

regression, two approaches should be considered: obtaining more data to discover new 

schedule estimating relationships (SERs) or using current SERs to build a regression 

model.  This regression model could be used to develop an initial duration estimate, then 

techniques from this research could be used to enhance the duration estimate with EVM 

data. 
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Appendix A:  Data Adjustments 

Table 44:  Data Adjustments - AEHF (F04701-02-C-0002) 

Report Date 

Completion 

Date ECD Adjustment 

2/23/2003 1/25/2009   Used reported completion date (1/25/09) 

3/30/2003 1/25/2009   Used reported completion date (1/25/09) 

8/31/2003 1/25/2009   Used reported completion date (1/25/09) 

12/30/2007 5/31/2011   Used reported completion date (5/31/11) 

9/25/2011 12/31/2013   Used reported completion date (12/31/13) 

4/29/2012 9/30/2013   Used reported completion date (9/30/13) 

 

Table 45:  Program: GPS OCX (FA8807-08-C-0001) 

Report 

Date 

Completion 

Date ECD Adjustment 

12/28/2007 4/30/2009   Used the reported completion date for ECD (4/30/09) 

2/1/2008 5/30/2009   Used the reported completion date for ECD (5/30/09) 

2/29/2008 5/30/2009   Used the reported completion date for ECD (5/30/09) 

3/28/2008 5/30/2009   Used the reported completion date for ECD (5/30/09) 

5/2/2008 5/30/2009   Used the reported completion date for ECD (5/30/09) 

5/30/2008 5/30/2009   Used the reported completion date for ECD (5/30/09) 

6/27/2008 5/30/2009   Used the reported completion date for ECD (5/30/09) 

 

Table 46:  Program: GPS OCX (FA8807-08-C-0003) 

Report 

Date 

Start 

Date ECD Adjustment 

3/28/2010 2/25/2010 3/31/2016 

Did not use this month’s data. It appears to be from a 

different contract: different contract start date from the 

other data points (11/21/07) 
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Table 47:  Months with Missing IDE Data MUOS (N00039-04-C-2009) 

Report 

Date 

2/22/2009 

3/29/2009 

4/26/2009 

2/24/2013 

3/31/2013 

4/28/2013 

5/26/2013 

6/30/2013 

7/28/2013 

8/25/2013 

 

Table 48:  Data Adjustments - NAVSTAR GPS (FA8807-06-C-0001) 

Report 

Date ECD Adjustment 

7/28/2006   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

9/1/2006   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

9/29/2006   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

10/27/2006   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

12/1/2006   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

12/29/2006   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

2/2/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

3/2/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

3/30/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

4/27/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

6/1/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

6/29/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

7/27/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

8/31/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

9/28/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

11/2/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

11/30/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

12/28/2007   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 

2/1/2008   Used IMS reported completion date (11/2/09) from first IMS 2/20/08 
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Table 49:  Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0001) 

Report 

Date 

7/28/2006 

9/1/2006 

9/29/2006 

10/27/2006 

12/1/2006 

12/29/2006 

2/2/2007 

3/2/2007 

3/30/2007 

4/27/2007 

6/1/2007 

6/29/2007 

7/27/2007 

8/31/2007 

9/28/2007 

11/2/2007 

11/30/2007 

12/28/2007 

2/1/2008 

2/29/2008 

5/30/2008 

6/27/2008 

8/1/2008 

12/3/2010 

12/31/2010 

1/28/2011 

2/25/2011 

4/1/2011 

4/29/2011 

6/3/2011 

7/1/2011 

7/29/2011 

9/2/2011 

9/30/2011 

3/30/2012 

2/1/2013 

3/1/2013 

3/29/2013 
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Table 50:  Data Adjustments - NAVSTAR GPS (FA8807-06-C-0001) 

 

Report 

Date
BAC BCWS BCWP ACWP Notes

5/30/2008 71,098,080,040 43,439,985,020 40,962,631,470 45,463,954,240

Inconsistent values. Verified amount 

should be millions (July 2013 Format 3).

6/27/2008 71,098,077,750 45,894,059,080 43,977,857,780 48,645,986,660 Corrected values (divided by 1000)

8/29/2008 72,389,214,760 50,872,327,110 50,602,492,380 54,705,923,800 Corrected values (divided by 1000)

11/7/2008 72,434,559,250 57,014,389,560 56,527,728,370 61,614,545,870 Corrected values (divided by 1000)

1/2/2009 72,736,320,630 60,263,855,720 59,003,046,410 64,426,448,100 Corrected values (divided by 1000)

1/30/2009 74,290,042,550 61,257,442,270 60,301,225,820 66,099,221,580 Corrected values (divided by 1000)

2/27/2009 74,253,744,010 62,243,481,210 61,407,136,860 67,728,083,900 Corrected values (divided by 1000)

4/3/2009 74,746,177,020 63,523,323,150 62,653,351,860 69,959,445,080 Corrected values (divided by 1000)

5/29/2009 75,916,157,950 66,466,698,820 64,821,227,730 72,251,147,020 Corrected values (divided by 1000)

7/31/2009 76,049,327,110 68,531,432,140 67,633,591,370 75,258,526,470 Corrected values (divided by 1000)

8/28/2009 76,077,136,590 70,424,503,960 69,449,895,160 77,092,417,090 Corrected values (divided by 1000)

1/1/2010 76,017,437,990 73,275,299,700 72,369,324,180 81,844,861,410 Corrected values (divided by 1000)

1/29/2010 76,023,959,900 73,592,144,180 72,759,835,470 83,188,966,060 Corrected values (divided by 1000)

2/26/2010 75,667,517,120 73,678,546,600 72,992,968,390 84,534,934,370 Corrected values (divided by 1000)

4/30/2010 75,667,511,550 74,123,735,390 73,359,370,260 87,256,865,430 Corrected values (divided by 1000)

7/2/2010 26,397,443 26,397,443 26,397,568 30,025,268

Did not use this month's data.  Data 

appears to be from different contract.

7/30/2010 75,721,045,370 74,308,069,770 73,973,581,820 90,033,758,670 Corrected values (divided by 1000)

8/27/2010 75,721,045,370 74,358,623,460 74,216,251,400 90,603,357,170 Corrected values (divided by 1000)

12/3/2010 75,721,047,790 74,384,289,790 74,382,668,930 91,484,071,110 Corrected values (divided by 1000)

12/31/2010 75,721,048,970 74,384,289,790 74,382,668,930 91,573,441,170 Corrected values (divided by 1000)

1/28/2011 75,721,048,970 74,384,290,970 74,384,413,000 91,783,913,030 Corrected values (divided by 1000)

2/25/2011 75,721,048,970 74,384,290,970 74,384,413,000 91,953,844,170 Corrected values (divided by 1000)

4/1/2011 75,721,049,010 74,384,293,380 74,384,415,410 92,093,863,310 Corrected values (divided by 1000)

4/29/2011 75,721,049,010 74,384,291,010 74,384,414,220 92,337,336,560 Corrected values (divided by 1000)

6/3/2011 75,721,049,010 74,384,291,010 74,384,414,220 92,398,331,150 Corrected values (divided by 1000)

7/29/2011 75,721,050,220 74,384,291,010 74,384,414,220 92,429,535,010 Corrected values (divided by 1000)

9/30/2011 111,254,427,970 80,334,888,200 79,646,618,390 97,153,544,210 Corrected values (divided by 1000)

3/30/2012 121,909,362,420 103,471,362,310 103,728,019,060 107,298,090,770 Corrected values (divided by 1000)

4/27/2012 122,029,968,270 104,860,494,760 104,932,474,730 108,230,414,990 Corrected values (divided by 1000)

6/1/2012 122,102,957,260 106,700,407,470 106,483,744,560 109,668,903,710 Corrected values (divided by 1000)

6/29/2012 121,953,566,350 107,996,524,900 108,043,514,270 111,240,130,270 Corrected values (divided by 1000)

8/3/2012 122,300,124,770 109,718,335,580 109,193,583,820 112,705,700,500 Corrected values (divided by 1000)

8/31/2012 122,259,444,490 110,894,265,980 110,686,336,810 114,634,671,950 Corrected values (divided by 1000)

9/28/2012 121,917,682,130 112,802,176,580 112,884,996,410 116,898,310,100 Corrected values (divided by 1000)

11/30/2012 122,093,327,350 114,728,468,640 114,958,572,800 118,866,848,350 Corrected values (divided by 1000)

2/1/2013 122,063,787,150 117,242,810,500 116,642,266,010 120,415,610,630 Corrected values (divided by 1000)

3/1/2013 123,543,730,230 117,907,830,010 117,514,885,230 121,381,259,310 Corrected values (divided by 1000)

3/29/2013 123,387,178,960 118,400,041,350 118,104,891,740 121,999,091,410 Corrected values (divided by 1000)

5/3/2013 123,555,159,450 119,429,196,680 119,349,668,270 123,132,402,880 Corrected values (divided by 1000)

5/31/2013 123,578,144,670 120,241,157,130 119,934,629,250 123,684,311,600 Corrected values (divided by 1000)

6/28/2013 23,530,727,520 10,179,436,740 10,118,731,740 10,051,101,890

Did not use this month's data.  Data 

appears to be from different contract: 

different start date (9/28/12 vs. 5/26/06)

8/2/2013 123,625,515,410 121,876,840,320 121,406,668,960 125,104,405,170 Corrected values (divided by 1000)
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Table 51:  Data Adjustments - NAVSTAR GPS (FA8807-06-C-0003) 

Report Date Completion Date ECD Adjustment 

11/24/2006 10/30/2007   Used the reported Completion date of 10/30/07 

12/29/2006 10/30/2007   Used the reported Completion date of 10/30/07 

1/26/2007 10/30/2007   Used the reported Completion date of 10/30/07 

2/23/2007 10/30/2007   Used the reported Completion date of 10/30/07 

3/30/2007 10/30/2007   Used the reported Completion date of 10/30/07 

4/27/2007 10/30/2007   Used the reported Completion date of 10/30/07 

5/25/2007 10/30/2007   Used the reported Completion date of 10/30/07 

6/29/2007 10/30/2007   Used the reported Completion date of 10/30/07 
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Table 52:  Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0003) 

Report Date 

11/24/2006 

12/29/2006 

1/26/2007 

2/23/2007 

3/30/2007 

4/27/2007 

5/25/2007 

6/29/2007 

7/27/2007 

8/24/2007 

9/28/2007 

10/26/2007 

11/23/2007 

12/28/2007 

1/25/2008 

2/22/2008 

3/28/2008 

4/25/2008 

12/31/2008 

2/25/2011 

4/1/2011 

4/29/2011 

5/27/2011 

7/1/2011 

7/29/2011 

8/26/2011 

9/30/2011 

10/28/2011 

11/25/2011 

12/30/2011 

1/27/2012 

2/24/2012 

3/30/2012 

4/27/2012 

5/25/2012 

6/29/2012 

7/27/2012 

8/24/2012 

9/28/2012 
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Table 53:  Data Adjustments - NAVSTAR GPS (FA8807-06-C-0004) 

Report 

Date 

Start 

Date ECD Adjustment 

11/18/07 6/26/06 12/31/07 

Did not use data from this month.  It appears to be from a 

different contract: different start date (6/26/06 vs. 6/02/06). 

12/31/07 6/02/06 

 

Used next month’s ECD (1/12/11). 

 

Table 54:  Months with Missing IDE Data - NAVSTAR GPS (FA8807-06-C-0004) 

Report 

Date 

12/31/2007 

1/27/2008 

2/24/2008 

5/25/2008 

8/24/2008 

6/28/2009 

7/25/2010 

2/26/2012 

10/26/2012 
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Table 55:  Months with Missing IDE Data – WGS Blk 2 (FA8808-06-C-0001) 

Report Date 

11/30/2006 

12/21/2006 

1/25/2007 

2/22/2007 

3/29/2007 

4/26/2007 

5/31/2007 

6/28/2007 

7/26/2007 

8/30/2007 

9/27/2007 

10/25/2007 

11/29/2007 

12/20/2007 

1/31/2008 

2/28/2008 

3/27/2008 

4/24/2008 

4/26/2012 

5/31/2012 

6/28/2012 

7/26/2012 

8/30/2012 

9/27/2012 

10/25/2012 

11/29/2012 

12/20/2012 

1/31/2013 

2/28/2013 

3/28/2013 

4/25/2013 

5/30/2013 

6/27/2013 

7/25/2013 

8/29/2013 

9/26/2013 

10/31/2013 

11/28/2013 

12/19/2013 

1/30/2014 
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Table 56:  Months with Missing IDE Data - WGS B2FO (FA8808-10-C-0001) 

Report Date 

10/28/2010 

11/25/2010 

12/23/2010 

11/28/2013 

12/19/2013 

1/30/2014 

2/27/2014 

3/27/2014 

4/24/2014 

 

Table 57:  Additional Data - SBIRS (F04701-95-C-0017) 

Notes 

Additional data (from 12/1/96 until 7/26/2004) was provided by 

the author of the AFCAA research (Keaton, 2014). 

 

Table 58:  Data Adjustment – SBIRS (F04701-95-C-0017) 

Report 

Date Original BAC Prior BAC Adjusted BAC Next BAC Adjustment 

8/29/04 3,311,589,000 5,259,883,000 5,274,890,122 5,317,410,300 

Adjusted BAC with 

linear interpolation 

for regression 

forecast. 

1/29/06 4,206,867,200 5,675,887,300 5,920,741,440 6,173,757,384 

Adjusted BAC with 

linear interpolation 

for regression 

forecast. 

12/30/07 5,414,927,378 6,555,123,944 6,725,182,546 6,906,578,389 

Adjusted BAC with 

linear interpolation 

for regression 

forecast. 
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Table 59:  Months with Missing IDE Data – AEHF (F04701-02-C-0002) 

Report Date 

1/1/1997 1/1/2000 1/1/2003 1/29/2006 

2/1/1997 2/1/2000 2/1/2003 2/26/2006 

3/1/1997 3/1/2000 3/1/2003 3/26/2006 

4/1/1997 4/1/2000 4/1/2003 4/30/2006 

5/1/1997 5/1/2000 5/1/2003 5/28/2006 

6/1/1997 6/1/2000 6/1/2003 6/25/2006 

7/1/1997 7/1/2000 7/1/2003 7/30/2006 

8/1/1997 8/1/2000 8/1/2003 8/27/2006 

9/1/1997 9/1/2000 9/1/2003 9/24/2006 

10/1/1997 10/1/2000 10/1/2003 10/29/2006 

11/1/1997 11/1/2000 11/1/2003 11/26/2006 

12/1/1997 12/1/2000 12/1/2003 12/31/2006 

1/1/1998 1/1/2001 1/1/2004 1/28/2007 

2/1/1998 2/1/2001 2/1/2004 2/25/2007 

3/1/1998 3/1/2001 3/1/2004 3/25/2007 

4/1/1998 4/1/2001 4/1/2004 4/29/2007 

5/1/1998 5/1/2001 5/1/2004 5/27/2007 

6/1/1998 6/1/2001 6/1/2004 6/24/2007 

7/1/1998 7/1/2001 7/1/2004 7/29/2007 

8/1/1998 8/1/2001 8/29/2004 8/26/2007 

9/1/1998 9/1/2001 9/26/2004 9/30/2007 

10/1/1998 10/1/2001 10/31/2004 10/28/2007 

11/1/1998 11/1/2001 11/28/2004 11/25/2007 

12/1/1998 12/1/2001 12/26/2004 12/30/2007 

1/1/1999 1/1/2002 1/30/2005 1/27/2008 

2/1/1999 2/1/2002 2/27/2005 2/24/2008 

3/1/1999 3/1/2002 3/27/2005 3/30/2008 

4/1/1999 4/1/2002 4/24/2005 4/27/2008 

5/1/1999 5/1/2002 5/29/2005 5/25/2008 

6/1/1999 6/1/2002 6/26/2005 6/29/2008 

7/1/1999 7/1/2002 7/31/2005   

8/1/1999 8/1/2002 8/28/2005   

9/1/1999 9/1/2002 9/25/2005   

10/1/1999 10/1/2002 10/30/2005   

11/1/1999 11/1/2002 11/27/2005   

12/1/1999 12/1/2002 12/25/2005   
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Table 60:  Data Adjustment – WGS Block 2 (FA8808-06-C-0001) 

Report 

Date 

11/30/2006 

12/21/2006 

1/25/2007 

2/22/2007 

3/29/2007 

4/26/2007 

5/31/2007 

6/28/2007 

7/26/2007 

8/30/2007 

9/27/2007 

10/25/2007 

11/29/2007 

12/20/2007 

1/31/2008 

2/28/2008 

3/27/2008 

4/24/2008 

4/26/2012 

5/31/2012 

6/28/2012 

7/26/2012 

8/30/2012 

9/27/2012 

10/25/2012 

11/29/2012 

12/20/2012 

1/31/2013 

2/28/2013 

3/28/2013 

4/25/2013 

5/30/2013 

6/27/2013 

7/25/2013 

8/29/2013 

9/26/2013 

10/31/2013 

11/28/2013 

12/19/2013 

1/30/2014 
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Table 61:  Months with Missing IDE Data - WGS B2FO (FA8808-10-C-0001) 

Report Date 

10/28/2010 

11/25/2010 

12/23/2010 

11/28/2013 

12/19/2013 

1/30/2014 

2/27/2014 

3/27/2014 

4/24/2014 
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Appendix B:  Levene Tests for Tukey-Kramer HSD 

 
Figure 36:  Levene Test (All Contracts) 
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Figure 37:  Levene Test (IDE Contracts) 
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Figure 38:  Levene Test (Non-OTB Contracts) 
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Figure 39:  Levene Test (OTB Contracts) 
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Figure 40:  Levene Test - Short Duration (GPS OCX) 
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Figure 41:  Levene Test - Medium Duration (NAVSTAR GPS, MUOS, & WGS) 
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Figure 42:  Levene Test - Long Duration (AEHF & SBIRS) 
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Appendix C:  Duration Accuracy Results (Individual Contracts) 

Table 62:  NAVSTAR GPS (FA8807-06-C-0001) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status 

quo) IMS PD IDE 

IMS PD / 

SPI(t) * 

CPI * BEI 

IDE / 

SPI(t) 

(T.S.) * 

BEI 

Regress-

ion 

Kalman 

Filter 

0 to 10 52.72% 52.72% 52.72% 37.76% 49.55% 74.58% 52.72% 

11 to 20 52.72% 52.72% 52.72% 42.05% 47.91% 80.11% 52.72% 

21 to 30 51.75% 51.75% 51.75% 43.07% 42.10% 63.11% 48.86% 

31 to 40 50.26% 50.45% 43.34% 42.26% 40.10% 52.74% 52.42% 

41 to 50 47.04% 46.95% 29.00% 36.40% 23.83% 52.29% 46.07% 

51 to 60 40.82% 41.84% 17.38% 21.41% 7.72% 53.17% 44.53% 

61 to 70 19.57% 19.57% 14.61% 7.03% 6.86% 50.60% 35.93% 

71 to 80 11.16% 11.16% 11.16% 5.03% 10.06% 40.89% 27.36% 

81 to 90 0.00% 0.00% 8.32% 6.78% 5.07% 15.14% 0.71% 

91 to 100 0.00% 0.00% 4.33% 5.56% 6.08% 15.79% 1.20% 

MAPE 33.05% 33.16% 29.26% 25.14% 24.45% 50.57% 36.44% 

 
 

 
Figure 43:  NAVSTAR GPS (FA8807-06-C-0001) Accuracy over Time 
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Table 63:  NAVSTAR GPS (FA8807-06-C-0003) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status 

quo) IMS PD 

IMS PD / 

[SPI(t) T.S. 

* BEI(T.S.) 

* CPI(T.S.)] 

Regress-

ion 

Kalman 

Filter IDE 

IDE / 

[SPI(t) 

(T.S.) * 

BEI (T.S.)] 

0 to 10 80.56% 80.56% 80.08% 72.81% 80.56% 80.54% 80.19% 

11 to 20 79.66% 79.66% 76.61% 76.22% 79.66% 79.64% 77.60% 

21 to 30 41.65% 41.65% 32.70% 71.81% 40.12% 36.37% 29.45% 

31 to 40 36.64% 36.31% 25.73% 63.55% 34.22% 28.27% 28.13% 

41 to 50 36.72% 36.72% 30.53% 69.15% 34.86% 29.06% 23.17% 

51 to 60 36.72% 36.47% 13.71% 69.54% 32.04% 17.10% 7.92% 

61 to 70 29.73% 29.73% 11.12% 65.43% 26.16% 20.59% 18.92% 

71 to 80 2.42% 4.37% 1.05% 14.11% 2.97% 3.94% 4.02% 

81 to 90 0.77% 1.58% 1.32% 22.46% 1.73% 4.83% 6.57% 

91 to 100 0.77% 0.19% 1.32% 22.46% 1.73% 4.83% 6.57% 

MAPE 32.89% 32.69% 26.14% 56.74% 31.75% 27.91% 25.67% 

 
 

 
Figure 44:  NAVSTAR GPS (FA8807-06-C-0003) Accuracy over Time 

  

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

M
e

an
 A

b
so

lu
te

 P
e

rc
e

n
t 

Er
ro

r 
(M

A
P

E)
 

Percent Complete 

CPR PD (status quo) IDE / [SPI(t) (T.S.)*BEI (T.S.)] 



142 

Table 64:  NAVSTAR GPS (FA8807-06-C-0004) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status 

quo) 

IMS 

PD 

IMS PD / 

[SPI(t) 

(T.S.)*BEI] 

Regress-

ion 

Kalman 

Filter IDE IDE/SPI 

0 to 10               

11 to 20               

21 to 30 36.35% 36.35% 35.66% 62.01% 36.68% 27.17% 26.54% 

31 to 40 36.29% 35.98% 31.05% 39.65% 35.99% 6.32% 5.43% 

41 to 50 36.08% 34.05% 25.71% 49.00% 35.15% 21.04% 18.38% 

51 to 60 36.08% 33.08% 9.19% 47.30% 28.47% 17.53% 14.77% 

61 to 70 19.62% 29.84% 5.11% 42.25% 16.15% 8.92% 7.49% 

71 to 80 12.36% 21.36% 6.40% 28.29% 12.14% 3.23% 3.09% 

81 to 90 6.35% 6.16% 4.51% 42.78% 4.35% 5.82% 5.03% 

91 to 100 3.18% 2.78% 0.92% 18.64% 1.82% 3.58% 2.22% 

MAPE 23.76% 25.59% 14.92% 41.47% 21.75% 11.66% 10.33% 

 
 

 
Figure 45:  NAVSTAR GPS (FA8807-06-C-0004) Accuracy over Time 
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Table 65:  GPS OCX (FA8807-08-C-0001) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status quo) IMS PD 

IMS PD / 

[SPI(t) T.S.* 

BEI(T.S.)* 

CPI(T.S.)] Regression 

Kalman 

Filter 

0 to 10 29.74% 30.39% 31.37% 30.87% 28.95% 

11 to 20 27.76% 28.95% 25.35% 31.50% 28.94% 

21 to 30 27.76% 28.16% 20.92% 32.35% 28.46% 

31 to 40           

41 to 50 27.76% 25.79% 19.45% 32.83% 29.03% 

51 to 60 27.76% 28.16% 25.57% 29.34% 29.24% 

61 to 70 27.76% 28.16% 26.88% 20.85% 30.33% 

71 to 80 17.24% 16.18% 15.16% 18.31% 17.18% 

81 to 90 5.99% 5.99% 6.29% 16.09% 12.63% 

91 to 100 0.00% 0.00% 0.51% 11.41% 0.35% 

MAPE 20.41% 20.49% 18.37% 24.08% 21.73% 

 
 

 
Figure 46:  GPS OCX (FA8807-08-C-0001) Accuracy over Time 
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Table 66:  GPS OCX (FA8807-08-C-0003) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status quo) IMS PD 

IMS PD / 

[SPI(t) *CPI 

*BEI] Regression 

Kalman 

Filter 

0 to 10 36.12% 36.47% 33.94% 6.47% 36.47% 

11 to 20 35.76% 36.47% 26.63% 26.47% 36.46% 

21 to 30 35.76% 35.41% 20.84% 22.33% 35.42% 

31 to 40 35.76% 33.53% 29.64% 35.90% 34.58% 

41 to 50 35.76% 34.51% 34.05% 40.65% 35.35% 

51 to 60 28.24% 31.71% 31.72% 33.43% 31.48% 

61 to 70 21.29% 21.29% 18.75% 27.62% 19.26% 

71 to 80 10.59% 14.47% 11.80% 24.22% 17.26% 

81 to 90 5.57% 7.14% 5.27% 19.07% 10.44% 

91 to 100 3.88% 6.71% 3.71% 16.07% 4.00% 

MAPE 25.71% 26.53% 21.98% 25.88% 27.18% 

 
 

 
Figure 47:  GPS OCX (FA8807-08-C-0003) Accuracy over Time 
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Table 67:  WGS (FA8808-06-C-0001) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR 

PD 

(status 

quo) 

IMS 

PD 

IMS PD 

/ [SPI* 

CPI] 

IMS PD 

/ [SPI(t) 

(T.S.) * 

CPI] 

Regress-

ion 

Kalman 

Filter IDE 

IDE / 

[SPI(t) 

(T.S.) * 

CPI] 

0 to 10 44.55% 44.55% 46.56% 56.54% 23.32% 43.97% 44.55% 56.54% 

11 to 20 43.44% 43.44% 41.37% 38.03% 14.65% 43.68% 43.44% 38.03% 

21 to 30 43.66% 42.09% 39.54% 39.77% 33.84% 41.53% 39.96% 37.53% 

31 to 40 29.95% 34.17% 31.39% 31.09% 36.60% 33.38% 18.58% 14.78% 

41 to 50 16.58% 24.53% 22.79% 22.38% 32.36% 23.97% 27.94% 25.90% 

51 to 60 21.10% 24.08% 22.56% 22.22% 28.56% 23.89% 18.77% 17.52% 

61 to 70 16.75% 15.54% 12.18% 12.62% 25.31% 16.04% 9.82% 12.99% 

71 to 80 16.75% 9.84% 7.11% 6.88% 22.52% 13.15% 8.59% 10.58% 

81 to 90 16.75% 2.96% 1.05% 1.42% 17.49% 12.01% 2.96% 1.42% 

91 to 100 16.75% 0.17% 2.62% 4.92% 2.35% 4.62% 0.17% 4.92% 

MAPE 24.77% 22.03% 20.31% 20.31% 23.75% 23.70% 19.22% 18.69% 

 
 

 
Figure 48:  WGS (FA8808-06-C-0001) Accuracy over Time  
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Table 68:  WGS (FA8808-10-C-0001) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status 

quo) IMS PD 

IMS PD / 

[SPI(t) 

(T.S.)* 

BEI] Regression 

Kalman 

Filter IDE 

IDE / 

[SPI(t) 

(T.S.) 

*BEI] 

0 to 10 36.71% 37.16% 50.90% 20.46% 36.92% 37.16% 50.91% 

11 to 20 36.73% 37.86% 51.18% 46.46% 39.38% 33.44% 47.71% 

21 to 30 36.73% 37.07% 45.94% 53.88% 42.85% 27.82% 37.93% 

31 to 40 36.73% 36.73% 40.47% 55.18% 41.40% 26.18% 30.53% 

41 to 50 36.73% 36.89% 31.69% 51.94% 35.58% 21.70% 15.13% 

51 to 60 36.73% 36.73% 29.95% 47.97% 33.03% 13.79% 4.58% 

61 to 70 25.28% 25.28% 18.57% 43.70% 20.27% 9.01% 1.14% 

71 to 80 20.97% 21.01% 17.61% 38.73% 16.29% 9.01% 5.44% 

81 to 90 12.67% 12.67% 11.28% 32.71% 13.44% 10.75% 9.30% 

91 to 100 0.00% 3.41% 3.44% 28.31% 4.22% 3.41% 3.44% 

MAPE 29.33% 29.70% 30.90% 43.56% 29.47% 19.53% 20.45% 

 
 

 
Figure 49:  WGS (FA8808-10-C-0001) Accuracy Results 
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Table 69:  MUOS (N00039-04-C-2009) Accuracy Results 

 Forecasting Model 

Percent 

Complete 

Interval 

CPR PD 

(status 

quo) IMS PD 

IMS PD/ 

SPI(T.S.) Regression 

Kalman 

Filter IDE 

IDE/ 

SPI(T.S.) 

0 to 10 31.96% 28.35% 27.70% 11.07% 30.24% 28.09% 27.36% 

11 to 20 31.96% 24.75% 23.89% 20.67% 30.10% 15.69% 14.75% 

21 to 30 31.96% 22.90% 22.28% 26.06% 29.95% 10.99% 10.24% 

31 to 40 31.96% 23.27% 21.81% 33.33% 29.21% 7.96% 8.49% 

41 to 50 25.92% 22.24% 21.89% 31.48% 23.88% 2.07% 2.23% 

51 to 60 16.36% 19.42% 18.55% 30.32% 7.02% 7.24% 7.65% 

61 to 70 15.05% 3.40% 3.17% 29.13% 0.94% 3.27% 3.12% 

71 to 80 9.82% 2.71% 2.23% 25.74% 0.89% 4.41% 4.27% 

81 to 90 3.07% 1.75% 1.91% 21.23% 0.89% 7.11% 7.39% 

91 to 100 2.03% 1.91% 2.03% 15.94% 3.79% 0.01% 0.12% 

MAPE 19.23% 14.47% 13.97% 24.81% 14.92% 7.96% 7.87% 

 
 

 
Figure 50:  MUOS (N00039-04-C-2009) Accuracy over Time 
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Table 70:  AEHF (F04701-02-C-0002) Accuracy Results 

Percent 

Complete 

Interval 

Forecasting Model 

CPR PD 

(status quo) IMS PD 

IMS PD / 

[SPI(t) 

*CPI] Regression 

Kalman 

Filter 

0 to 10 47.40% 47.40% 46.64% 60.90% 47.25% 

11 to 20 46.87% 46.87% 44.51% 58.22% 46.25% 

21 to 30 40.90% 40.90% 36.14% 37.23% 39.96% 

31 to 40 30.92% 30.92% 23.53% 43.52% 29.73% 

41 to 50 30.61% 30.61% 21.55% 44.35% 29.52% 

51 to 60 24.66% 24.66% 19.68% 30.87% 25.94% 

61 to 70 16.50% 16.50% 18.42% 24.97% 22.65% 

71 to 80 13.19% 13.19% 15.16% 12.18% 13.17% 

81 to 90 6.02% 6.02% 6.56% 5.37% 7.98% 

91 to 100 2.36% 2.36% 5.93% 6.03% 2.98% 

MAPE 25.66% 25.66% 23.09% 31.72% 26.32% 

 
 

 
Figure 51:  AEHF (F04701-02-C-0002) Accuracy Results over Time 
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Table 71:  SBIRS (F04701-95-C-0017) Accuracy Results 

Percent 

Complete 

Interval 

Forecasting Model 

CPR PD 

(status 

quo) 

IMS 

PD IDE 

IMS PD / 

[SPI(t) 

(T.S.) *BEI 

(T.S.)] 
IDE/ 

SPI Regression 

Kalman 

Filter 

0 to 10 50.61% 50.61% 50.61% 49.98% 50.26% 57.67% 50.34% 

11 to 20 46.45% 46.45% 46.45% 45.83% 45.78% 63.40% 45.96% 

21 to 30 37.54% 37.54% 37.54% 36.88% 36.69% 60.71% 36.61% 

31 to 40 31.33% 31.33% 31.33% 26.14% 30.60% 39.21% 30.55% 

41 to 50 24.85% 24.85% 24.85% 13.54% 24.60% 29.83% 24.93% 

51 to 60 16.83% 16.89% 16.19% 5.61% 16.07% 30.62% 17.21% 

61 to 70 11.04% 10.67% 3.10% 1.75% 3.87% 20.49% 10.87% 

71 to 80 2.50% 4.85% 3.38% 6.88% 3.66% 8.17% 3.94% 

81 to 90 0.14% 0.04% 7.94% 10.71% 8.07% 8.93% 0.27% 

91 to 100               

MAPE 24.63% 24.84% 24.60% 21.88% 24.40% 35.60% 24.56% 

 
 

 
Figure 52:  SBIRS (F04701-95-C-0017) Accuracy Results over Time 
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Appendix D:  Regression Analysis Outputs 

 
Figure 53:  Regression Output - CPR PD (status quo) 
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Figure 54:  Leverage Plot - CPR PD (status quo) 

 

 
Figure 55:  Residual Plot - CPR PD (status quo) 
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Figure 56:  Cook's D - CPR PD (status quo) 

 

 
Figure 57:  Residuals Histogram & Shapiro-Wilk Normality Test (CPR PD) 
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Figure 58:  Studentized Residuals Check for Outliers (CPR PD) 

 

Table 72:  Breusch-Pagan Test for Heteroscedasticity (CPR PD) 

N 10 

Degrees of Freedom model 1 

Sum of Squared Errors (SSE) 0.007180 

Sum of Squared Residuals (SSR) 8.09E-08 

Breusch-Pagan  Test Statistic 0.0784 

Breusch-Pagan Test p-value 0.7794 
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Figure 59:  MAPE - CPR PD (status quo) 
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Figure 60:  Regression Output (IMS MAPEs) 
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Figure 61:  Leverage Plot (IMS MAPEs) 

 

 
Figure 62:  Residuals Plot (IMS MAPEs) 
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Figure 63:  Cook's D (IMS Model MAPEs) 

 
Figure 64:  Residuals Histogram & Shapiro-Wilk Normality Test (IMS MAPEs) 
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Figure 65:  Studentized Residuals Check for Outliers (IMS MAPEs) 

Table 73:  Breusch-Pagan Test for Heteroscedasticity (IMS MAPEs) 

N 10 

Degrees of Freedom model 1 

Sum of Squared Errors (SSE) 0.008702 

Sum of Squared Residuals (SSR) 1.80E-06 

Breusch-Pagan  Test Statistic 1.1885 

Breusch-Pagan Test p-value 0.2756 
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Figure 66:  MAPE for Predicting IMS Model Accuracy 
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Figure 67:  Regression Output (IDE MAPEs) 
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Figure 68:  Leverage Plot (IDE MAPEs) 

 

 
Figure 69:  Residuals Plot (IDE MAPEs) 
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Figure 70:  Cook's D (IDE MAPEs) 

 

 
Figure 71:  Residuals Histogram & Shapiro-Wilk Normality Test (IDE MAPEs) 
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Figure 72:  Studentized Residuals Check for Outliers (IDE MAPEs) 

Table 74:  Breusch-Pagan Test for Heteroscedasticity (IDE MAPEs) 

N 7 

Degrees of Freedom model 1 

Sum of Squared Errors (SSE) 0.004381 

Sum of Squared Residuals (SSR) 6.31E-07 

Breusch-Pagan  Test Statistic 0.8050 

Breusch-Pagan Test p-value 0.3696 
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Figure 73:  MAPE for Predicting IDE Model Accuracy 
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Figure 74:  Regression Output (IMS MAPE Delta) 
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Figure 75:  Leverage Plot (IMS MAPE Delta) 

 

 
Figure 76:  Residuals Plot (IMS MAPE Delta) 
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Figure 77:  Cook's D (IMS MAPE Delta) 

 

 
Figure 78:  Residuals Histogram & Shapiro-Wilk Test (IMS MAPE Delta) 
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Figure 79:  Studentized Residuals Check for Outliers (IMS MAPE Delta) 

Table 75:  Breusch-Pagan Test for Heteroscedasticity (IMS MAPE Delta) 

N 10 

Degrees of Freedom model 1 

Sum of Squared Errors (SSE) 0.003182 

Sum of Squared Residuals (SSR) 2.20E-07 

Breusch-Pagan Test Statistic 1.0859 

Breusch-Pagan Test p-value 0.2974 
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Figure 80:  MAPE for Predicting the Accuracy Delta (IMS Models - CPR PD) 
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Figure 81:  Regression Output #1 (IDE MAPE Delta) 
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Figure 82:  Leverage Plots (IDE MAPE Delta) 

 

 
Figure 83:  Residuals Plot (IDE MAPE Delta) 
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Figure 84:  Cook's D (IDE MAPE Delta) 

 

 
Figure 85:  Residuals Histogram & Shapiro-Wilk Test (IDE MAPE Delta) 
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Figure 86:  Studentized Residuals Check for Outliers (IDE MAPE Delta) 

Table 76:  Breusch-Pagan Test for Heteroscedasticity (IDE MAPE Delta) 

N 7 

Degrees of Freedom model 2 

Sum of Squared Errors (SSE) 0.001206 

Sum of Squared Residuals (SSR) 3.12E-08 

Breusch-Pagan Test Statistic 0.5254 

Breusch-Pagan Test p-value 0.7690 
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Figure 87:  MAPE for Predicting the Accuracy Delta (IDE - CPR PD) 
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Figure 88:  Regression Output #2 (IDE MAPE Delta) 
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Figure 89:  Leverage Plot (IDE MAPE Delta) 

 

 
Figure 90:  Residuals Plot (IDE MAPE Delta) 
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Figure 91:  Cook's D (IDE MAPE Delta) 

 

 
Figure 92:  Residuals Histogram & Shapiro-Wilk Test (IDE MAPE Delta) 
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Figure 93:  Studentized Residuals Check for Outliers (IDE MAPE Delta) 

 

Table 77:  Breusch-Pagan Test for Heteroscedasticity (IDE MAPE Delta) 

N 7 

Degrees of Freedom model 1 

Sum of Squared Errors (SSE) 0.002533 

Sum of Squared Residuals (SSR) 1.02E-07 

Breusch-Pagan Test Statistic 0.3910 

Breusch-Pagan Test p-value 0.5318 
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Figure 94:  MAPE for Predicting the Accuracy Delta (IDE - CPR PD) 
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Figure 95:  Regression Output (IDE - IMS MAPE Delta) 
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Figure 96:  Residuals Histogram & Shapiro-Wilk Test (IDE - IMS Delta) 

 
Figure 97:  Studentized Residuals Check for Outliers (IDE - IMS Delta) 
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Table 78:  Breusch-Pagan Test for Heteroscedasticity (IDE - IMS Delta) 

N 7 

Degrees of Freedom model 2 

Sum of Squared Errors (SSE) 0.000540 

Sum of Squared Residuals (SSR) 1.66E-08 

Breusch-Pagan Test Statistic 1.4008 

Breusch-Pagan Test p-value 0.4964 

 

 
Figure 98:  MAPE for Predicting the Accuracy Delta (IDE - IMS MAPE) 
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